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2008

A parallel adaptive mesh refinement (AMR) algorithm is proposed and applied to the

prediction of steady turbulent non-premixed compressible combusting flows in both

two and three space dimensions. The parallel solution-adaptive algorithm solves the

system of partial-differential equations governing turbulent compressible flows of re-

active thermally perfect gaseous mixtures using a fully coupled finite-volume formula-

tion on body-fitted multi-block quadrilateral and hexahedral meshes. The compress-

ible formulation adopted herein can readily accommodate large density variations and

thermo-acoustic phenomena. A preconditioned multigrid algorithm is used to obtain

the solution on highly stretched meshes in a more efficient manner. A flexible block-

based hierarchical data structure is used to maintain the connectivity of the solution

blocks in the multi-block mesh and to facilitate automatic solution-directed mesh

adaptation according to physics-based refinement criteria. For calculations of near-

wall turbulence, an automatic near-wall treatment readily accommodates situations

during adaptive mesh refinement where the mesh resolution may not be sufficient for

directly calculating near-wall turbulence using the low-Reynolds-number formulation.

Numerical results for turbulent diffusion flames, including cold- and hot-flow predic-

tions for a bluff-body burner, are described and compared to available experimental

data. The numerical results demonstrate the validity and potential of the parallel

AMR approach for predicting fine-scale features of complex turbulent non-premixed

flames.
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Chapter 1

Introduction

1.1 Turbulent Reactive Flow Simulations

With the recent advances in computational fluid dynamics (CFD) and numerical

methods for combusting flows, as well as advances in high-performance-computing

hardware, numerical modeling has become an important, powerful, and effective tool

for the design of advanced combustion systems. The reliance on numerical modeling

has also increased with the increasingly stringent emission legislation imposed by

governments worldwide [2], as the latter has made the combustor and engine design

process much more challenging.

Virtually all practical combustion systems involve turbulent combustion. More-

over, pollutant and particulate emissions are controlled by the details of the fuel-air

mixing and combustion processes. For these reasons, a detailed understanding of the

strong nonlinear interaction between the turbulent flow structure, chemical kinetics,

and thermodynamic properties of the reactants and products is required to obtain

improved low-emission combustor designs. Note that there are a wide range of exist-

ing combustion configurations in which the fuel and oxidizer are initially separated

and this provides some of the rationale for emphasizing non-premixed combustion

process in the present study.

Three primary tools for performing simulations of turbulent combusting flows have

emerged: (i) direct numerical simulation (DNS); (ii) large-eddy simulation (LES); (iii)

1
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and Reynolds- or Favre-averaged Navier-Stokes (RANS) simulation techniques, each

possessing various advantages and disadvantages [3, 4]. In DNS, all of the turbu-

lent and chemical length and time scales are fully resolved. For this reason, DNS

is a powerful tool for studying turbulent flame structure and turbulence/chemistry

interactions in detail. It is well suited for providing an understanding of the basic pro-

cesses of combustion phenomena, such as extinction and re-ignition, flow and flame

unsteadiness, and differential diffusion of chemical species. Some recent examples

of the application of DNS techniques to problems in combustion are described by

Vervisch [5]. However, despite the successes to date, DNS is generally restricted to

generic simplified and/or more academic combustor configurations due to the very

high computational costs of fully resolving all solution scales, both turbulent and

chemical. It will probably not be used to simulate turbulent combustion phenomena

in practical combustor configurations with complex geometry any time in the near

future.

LES is an alternative to DNS in which the large energy containing structures or

eddies are computed directly and the small, generally more universal, dissipative,

turbulent scales are modeled, thereby offering potential computational savings [6–9].

Over the last decade, the approach has evolved to become a truly predictive tool for

non-reacting flows [6–8, 10, 11] and has been shown in many applications to provide

more accurate predictions of the flow fields than the more conventional RANS-based

methods for reacting flows [5]. Nevertheless, universal and accurate sub-filter scale

models for non-premixed and premixed reacting flows are not currently available and

the accurate and reliable numerical solution of the filtered Navier-Stokes equations

remains a significant computational challenge for many practical problems.

As LES is still at an early stage of development for combusting flows and due to

the still relatively high cost of performing such simulations, RANS-based methods

are the predominant approach in engineering CFD applications for combusting flows

involving complex flow geometries [12]. Moreover, this situation is not expected to

change in the near future. Nevertheless, in spite of simplifications offered by time-

averaging approaches (integral length and time scales for the turbulence need only

be resolved, rather than all scales down to those of the Kolmogorov and chemical
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scales), the system of time-averaged equations governing turbulent combusting flows

can be both large and stiff and its solution can still place severe demands on available

computational resources. In particular, approaches are required to reduce the com-

putational costs of simulating combusting flows using RANS-based methods, thereby

permitting their application on a more routine basis to a wider range of problems.

1.2 Parallel Adaptive Algorithms

Many approaches have been taken to reduce the computational time required for

simulating combusting flows using RANS techniques. One successful approach is to

make use of solution-directed mesh adaptation, such as the adaptive mesh refinement

(AMR) algorithms. Efficient and accurate simulations of turbulent combusting flows

require a careful and selective gridding of the flow field; however, three-dimensional

mesh generation for complex geometry currently can require a significant amount of

manpower and computational effort. At the present time, a general rule of thumb

is that approximately 50% of the time to obtain a CFD flow solution is associated

with mesh generation. Given an initially coarse mesh that hopefully can be gen-

erated in a relatively short period of time, AMR algorithms can then produce more

highly refined mesh with many desirable features while significantly lowering the man-

power requirements and computer costs usually associated with the mesh generation

and subsequent solution computation. Large massively-parallel distributed-memory

computers provide another approach by enabling a many fold increase in processing

power and memory resources beyond those of conventional single-processor comput-

ers. These parallel computers provide an obvious avenue for greatly reducing the

time required to obtain numerical solutions of combusting flows. A combination of

these two strategies to produce a parallel AMR method that both reduces the over-

all problem size and the corresponding time to calculate a solution would seem very

desirable.
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1.2.1 Overview of Adaptive Mesh Refinement Algorithms

AMR is a powerful tool for computing solutions to partial differential equations

(PDEs) whose solutions have disparate spatial scales. Computational grids are auto-

matically adapted to the solution of the governing equations and this can be very effec-

tive in treating problems with multiple scales, providing the required spatial resolution

while minimizing memory and storage requirements. An adaptive grid technique was

originally proposed by Berger and Oliger for computing time-dependent solutions to

hyperbolic PDEs in multiple space dimensions [13], and AMR approaches have since

been developed for a wide variety of engineering problems [14–32]. Currently, sev-

eral different AMR strategies have emerged. These approaches can be classified into

four broad categories depending on the partitioning algorithm used and/or the data

structure that is adopted to keep track of the mesh connectivity. They are as follows:

(1) “patch-based”, (2) “cell-based”, (3) “block-based”, and (4) “hybrid block-based”

AMR techniques. Figure 1.1(a) depicts a base Cartesian mesh with cells tagged for

refinement. Figures 1.1(b)–1.1(d) demonstrate the subsequent refinement of this base

mesh resulting from the “patch-based”, “cell-based”, and “block-based” AMR meth-

ods. Each of these strategies is now briefly reviewed in turn below and compared to

one another. The advantages and disadvantages of each strategy are also discussed.

Berger, Oliger and Colella [13, 14] developed an algorithm for dynamic gridding,

now more generally referred to as patch-based AMR. The algorithm begins with

the entire computational domain covered with a coarsely resolved base-level regular

Cartesian grid. As the calculation progresses, individual grid cells are tagged for

refinement as illustrated in Figure 1.1(b). The patch-based AMR strategy relies

on a fairly sophisticated algorithm, laid out by Berger [33], to organize a collection

of individual grid cells into properly nested rectangular patches. The mesh within

these newly farmed patches can then be further refined, creating additional patches.

State-of-the-art packages adhering to this patch-based AMR include Chombo [34] and

SAMRAI [35].

In cell-based AMR, as proposed and developed for example by Powell and co-

workers [17, 18, 36] and Berger and Aftomis [24, 37, 38], each cell can be refined indi-



Section 1.2. Parallel Adaptive Algorithms 5

(a) Base Cartesian grid with cells tagged

for refinement as indicated by black dots

(b) Refined Cartesian mesh resulting

from patch-based AMR

(c) Refined Cartesian mesh resulting

from cell-based AMR

(d) Refined Cartesian mesh resulting

from block-based AMR

Figure 1.1: Illustration and comparison of the patch-based, cell-based and block-based
AMR techniques for Cartesian mesh.

vidually as shown in Figure 1.1(c) and each cell is stored using a tree data structure.

This cell-based tree structure is flexible and readily allows for the local refinement of

the mesh by keeping track of the computational cell connectivity as new grid points are

generated from the refinement process. Virtually all cell-based approaches are based

on Cartesian meshes. In many cell-based approaches, cut cells are generally used
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Figure 1.2: Illustration of overlapping grid consisting of two structured curvilinear
component grids.

(a) A body-fitted coarse grid (b) A refined body-fitted grid consisting

of ten grid blocks

Figure 1.3: Illustration of block-based adaptive mesh refinement on a body-fitted
grid.
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to treat complex geometry and very efficient AMR schemes have been devised using

this boundary treatment. However, discretization of elliptic operators on Cartesian

cut cells can be challenging [39] and applications are generally restricted to hyper-

bolic systems. Cart3D is a good example of a high-fidelity inviscid analysis package

which allows for automated CFD analysis on complex geometry with the cut-cell tech-

nique to handle the curved geometry boundaries [40]. Fully three-dimensional meshes

around extremely complex objects can be generated automatically and routinely in a

matter of a few hours or less using this technique.

Another AMR approach for treating more complex geometries with curved bound-

aries is based on composite overlapping grids used together with AMR. In this case,

curvilinear grids that conform to the curved boundaries are used together in an over-

lapping fashion with one or more Cartesian grids that fill the interior of the domain.

Figure 1.2 illustrates an overlapping grid consisting of two structured curvilinear com-

ponent grids in physical space, an annular grid and a background Cartesian grid. In

essence, a Chimera overlapping grid [41] technique is combined with AMR. Boden

and Toro [42], Brislawn [43], Chesshire [44], and Henshaw [45–49] demonstrated that

AMR on overlapping grids can lead to an efficient approach for solving problems with

multiple space and time scales for complex geometry. A main challenge of this AMR

approach is to determine the physical grid point in terms of mapping when refining

body-fitted grids. In other words, each component grid is logically rectangular defined

by a smooth mapping from computational space to physical space. The mapping is

used to define grid points at any desired resolution as required when a grid is refined.

Re-gridding for each base grid is necessary during the adaptation process and the

grid information such as connectivity and those grids hidden by refined grids, has to

be re-generated and stored. In general, some care is required during the re-gridding

for the interpolation between different base grids and/or between grids with different

levels to ensure that accurate values are obtained. Global conservation properties are

also difficult or impossible to enforce discretely with this overlapping grid approach.

In a block-based AMR strategy, mesh adaptation is accomplished by the dividing

and coarsening of appropriate solution blocks. In general, each block also has an

equal number of cells shown in Figure 1.1(d). The basic data structure is then a tree
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(quadtree for two dimensions and octree for three dimensions), where any block that

requires refinement generates a number of equal sized blocks (4 in two dimensions and

8 in three dimensions) when a resolution change of two is assumed. The block-based

AMR strategy results in a rather light tree data structure for prescribing the connec-

tivity between blocks as compared to the tree structure generally used for tracking cell

connectivity in the cell-based methods. In addition, the block-based data structure

naturally lends itself towards an efficient and readily scalable parallel implementa-

tion. It amortizes the overhead of communication over entire blocks of cells, instead

of over single cells as in cell-based data structures. However, generally larger numbers

of refined cells can be created (i.e., typically more than the corresponding number of

cells used in cell-based tree data structures) thereby possibly increasing the amount

of computational work and storage space needed to solve a given problem.

Applications of the block-based approach on Cartesian mesh are described by

Quirk [19], Berger [20], Gombosi and co-workers [50–54]. Groth and co-workers [32,55]

have since extended the approach developed by Groth et al. for computational mag-

netohydrodynamics [30,31,56] and developed a flexible block-based hierarchical data

structure to facilitate automatic solution-directed mesh adaptation on multiblock

body-fitted (curvilinear) meshes for complex flow geometries. While introducing some

added complications, the use of body-fitted meshes permits more accurate solutions

near boundaries, enables the use of anisotropic grids with grid point clustering and

stretching, and allows for better resolution of thin boundary and mixing layers. Fur-

thermore, unlike the overlapping AMR approaches, conservation properties of the

solution scheme are readily enforced discretely. Figure 1.3 illustrates the application

of block-based AMR technique to a body-fitted mesh.

Finally, hybrid block-based AMR approaches have also been considered. Holst

and Keppens [57] applied a hybrid approach to general curvilinear coordinate systems,

modifying the full tree data structure to allow for incomplete block families (not all

children are created; the usual block-based AMR always has complete families of 2,

4, or 8 children depending on dimensionality) and incorporating the ideas of patch-

based strategies. This hybrid AMR strategy requires two means to traverse the grid

hierarchy, e.g., there is a doubly linked list of grid pointers per level in addition
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to the tree data structure. Thus, the mixed data structure further complicates the

neighbour search algorithm in three-dimensions. Holst and Keppens [57] compared

the three AMR strategies, i.e., a patch-based, a tree block-based, and a hybrid block-

based, for a smooth two-dimensional advection test problem on a doubly periodic

domain with a second order numerical scheme, and found that the block-based AMR

approach is the most efficient in terms of the execution speed for the same accuracy.

However, it should be kept in mind that the applications considered by Holst and

Keppens were mainly two-dimensional and were restricted to classical and relativistic

MHD simulations.

In this thesis research, a block-based AMR strategy will be developed for combust-

ing flow applications, as this strategy appears to be somewhat more computationally

efficient with respect to parallelization aspects and memory requirements than cell-

based AMR. In addition, it allows for the use of anisotropic body-fitted grids and

is therefore better suited to tackling problems with thin shear and boundary layers

and curved boundaries. Further, although not considered here, this approach is also

well suited for solving large systems of PDEs, such as those encountered in turbulent

combusting flows with a preconditioned Krylov subspace iterative scheme as outlined

by Groth and Northrup [55]. See also related work by Keyes and co-workers [58–61].

The Schwarz type preconditioning used in the Newton-Krylov method exploits the

block structure of the grid to produce a very efficient parallel implementation of a

fully implicit time marching scheme.

1.2.2 Parallel AMR Algorithms for Combusting Flows

Adaptive mesh refinement techniques have been applied previously to both

steady [62–66] and unsteady [26, 67] combustion simulations. Bennett et al. in-

cluded local rectangular refinement techniques with a finite-difference discretization

for realistic combustion modeling [68,69]. The development of a new adaptive mesh-

ing method and its combustion applications were also explored by Bennett and

Valdati [68–71]. In addition, the effects of adaptive mesh refinement have also

been explored on unstructured meshes. Silva et al. [72] demonstrated an adaptive
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unstructured-grid calculation of high-speed, compressible flows of inert and reactive

gas mixtures. Sullivan et al. [73] investigated NOx formation in laminar, ammonia-

seeded, nitrogen-diluted, methane diffusion flame with the use of adaptive mesh re-

finement to capture fine-scale features of the flame. The latter included a detailed

chemical mechanism, differential diffusion, buoyancy, and radiative losses.

The use of massively parallel computing [74,75] has greatly advanced physics-based

numerical simulation of aircraft engine and combustion flows. Douglas et al. [76] de-

scribed a parallel algorithm for numerical combustion modeling and carried out simu-

lations of both the flame sheet problem (an axisymmetric laminar diffusion flame) [77]

and combustion problems with a finite-rate chemistry [77, 78] on parallel computers.

Desprez et al. [79] present the parallel computation of a combustion model with a

two-step sequential reaction mechanism and the algorithm was implemented with

high efficiency on the hypercube iPSC/860 and the Paragon by overlapping commu-

nications and computations. Nkonga et al. [80] developed a parallel strategy based

on a dynamic communication structure for the computation of a dispersed spray in

a turbulent flow. Yasar [81] has considered simulations of fusion plasmas, internal

combustion engines, particle dynamics, and transport systems, and has also ana-

lyzed the performance of this scalable parallel algorithm for numerical simulations

of turbulent, radiative, magnetized, reactive fluid and particle systems on parallel

distributed-memory computers. Some of Yasar’s work involves the study of internal

combustion engines and further has been utilized to produce numerical models such as

the parallel version of KIVA-3, a block-structured, multidimensional finite-difference

combustion code that is applicable to laminar and turbulent flows, subsonic and super-

sonic flows, and single-phase and dispersed two-phase flows [81–84]. Oran et al. [85]

conducted two-dimensional computations of the propagation of a detonation in a

low-pressure, argon-diluted mixture of hydrogen and oxygen with a detailed chemical

reaction mechanism on massively parallel computers. Lepper et al. [86] described the

parallelization strategy and some details of the implementation of a three-dimensional

simulation code for turbulent flow combustion processes in full-scale utility boilers.

Huang et al. [87] investigated the flame dynamics in a lean-premixed swirl-stabilized

combustor. Chen and co-workers have developed a massively parallel DNS code for
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simulations of turbulent flames with detailed descriptions of chemistry [88]. Although

the DNS simulations are limited to small scale laboratory flames with simple flow ge-

ometries, the results can be used to validate mixing and combustion models used

by simulations for practical combustion devices and some fundamental insight into

complex turbulence/chemistry interactions in flames.

Combined parallel AMR algorithms have also been considered in previous stud-

ies. Recent progress in the development and application of parallel AMR algorithms

for low-Mach-number reacting flows and premixed turbulent combustion is described

by Day and Bell [89–93]. More recently, Northrup and Groth [94] and Gao and

Groth [95, 96] have also proposed a parallel block-based AMR method using body-

fitted multiblock meshes for application to both laminar and turbulent non-premixed

combusting flows. The success of the block-based approach for body-fitted multi-

block meshes prompted Gao and Groth [97] to consider the extension of the parallel

algorithm for combusting flows to three dimensions. This thesis encompasses this

extension and provides a detailed description of the parallel adaptive algorithm for

two-dimensional axisymmetric and three-dimensional turbulent non-premixed com-

busting flows.

1.3 Motivation and Thesis Objectives

As described above, the prediction of turbulent combustion processes by numerical

methods remains a very challenging area of active research, due to the fact that

turbulent combusting flows involve a wide range of complicated physical and chemical

phenomena (flame front behavior is dictated by a strong interaction between the

turbulent flow structure, chemical kinetics, and thermodynamic properties of the

reactants and products). In addition, the numerical solution of such flows places

heavy demands on currently available computing resources.

The thesis research therefore focuses on the development of a new parallel CFD

method for more efficiently predicting both two- and three-dimensional turbulent

combusting flows. The goal is to devise a robust and efficient computational tool that

harnesses the potential of high-end parallel computers and thereby enables the more
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routine prediction of combustion processes associated with combustors of gas turbine

engines. The resulting numerical tool should enable detailed analysis of turbulent

combusting flows and at the same time be very helpful in the design and development

of gas turbine combustor systems. The research objectives are as follows:

1. Develop a numerical framework for predicting multi-species turbulent reacting

flows for gaseous fuels and oxidizers based on a finite-volume formulation applied

to the compressible form of the governing equations.

2. Cope with numerical stiffness associated with disparate spatial scales by devel-

oping a parallel solution-adaptive algorithm.

3. Verify the proposed parallel adaptive algorithm for a range of turbulent non-

reactive and reactive flows.

The primary goal of this thesis research is to enable numerical solutions of non-

premixed combusting flows in a routine, efficient, and accurate manner and not to im-

prove modelling of such flows. Therefore, somewhat simplified models for turbulence,

chemical kinetics, and interactions between turbulence and chemistry were employed.

In particular, a two-equation, k-ω turbulence model, one-step chemical kinetics for

gaseous fuels, and an eddy-dissipation model of turbulence/chemistry interactions

are considered and used. The use of these somewhat standard yet simple models of

turbulence, chemical kinetics, and turbulence-chemistry interaction has reduced the

mathematical complexity of the problem and thereby allows one to concentrate on

aspects of the algorithm development. Nevertheless, the modelling incorporates key

physical and chemical factors controlling combustion processes in realistic combustors

with sufficient accuracy for the predictions to be of engineering value. In some sense,

this research provides a foundation for future follow-on work that will involve the use

of more detailed chemical kinetic schemes, more sophisticated turbulence chemistry

interaction models, soot and radiation models, and multi-phase flow treatment for

liquid fuels.

It should be noted that the focus of this thesis research is on the development

of a highly scalable parallel finite-volume scheme with AMR for treating numerically
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stiff combusting flows having potentially disparate spatial scales. Although a multi-

grid method is considered as part of this study for accelerating the convergence for

steady-state problems, appropriate time-marching and/or iterative methods for solv-

ing unsteady and steady reactive flow problems having disparate temporal scales is

largely outside the scope of this thesis. It will undoubtedly be the subject of future

research efforts.

1.4 Thesis Organization

The thesis is structured as follows. In Chapter 2, the system of governing equa-

tions for a compressible thermally perfect reactive mixture of gases is presented. In

Chapter 3, the main elements of the finite-volume scheme and the multigrid algorithm

are described. Chapter 4 presents details on the proposed parallel adaptive mesh re-

finement scheme developed herein. A partial numerical verification of the algorithm

is carried out in Chapter 5. Components of the proposed algorithm are evaluated

separately for several canonical flow problems. In Chapter 6, the solutions of both

two-dimensional (axisymmetric) and three-dimensional algorithms for a bluff-body

burner are compared to experimental results. Finally, some conclusions are drawn

and the main contributions of the thesis are highlighted in Chapter 7.





Chapter 2

Mathematical Modelling

This chapter summarizes the governing equations and mathematical modelling

used herein for describing turbulent combusting flows. Section 2.1 introduces the

concept of Favre averaging and provides details of the derived Favre-averaged Navier-

Stokes equations for a turbulent reactive gaseous mixture. The closure approxima-

tions for the unresolved terms resulting from the Favre-averaging process are based

on the Boussinesq hypothesis and details are described in Section 2.2. Section 2.3

outlines the thermodynamic relationships and transport coefficients used to close the

system of governing equations. Finally, the closures for the time-averaged chemical

source terms are reviewed and described in Section 2.4.

2.1 Favre-Averaged Navier-Stokes Equations

2.1.1 Time Averaging Procedure

Many flows of engineering significance are turbulent. Turbulence introduces

random-like fluctuations to the flow properties. Most practical theoretical methods

and computational tools capable of representing the effects of turbulence are based

on statistical approaches, namely averaging concepts. The associated theory provides

a means of predicting or determining the averages of solution quantities. Reynolds

averaging of solution quantities, introduced by Reynolds in 1895, assumes a variety of

15
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forms involving either an integral or a summation [98]. The three forms of averaging

are the time average, spatial average and ensemble average. For the sake of complete-

ness, these forms are now briefly reviewed. The reader is referred to the textbook by

Wilcox [98] for further details.

Time averaging is the most commonly used form of averaging and is appropriate

for stationary turbulence (i.e., a turbulent flow that does not vary statistically with

time). Consider an instantaneous flow variable, such as instantaneous velocity, ~u,

expressed as ~u(~x, t). The time average of ~u is defined by

~uT(~x) = lim
T−→∞

1

T

∫ t+T

t

~u(~x, t)dt , (2.1)

where ~uT(~x) is the mean value of velocity and T is the time interval for the averaging

procedure. Note that, although applied to velocity here, the averaging procedure can

be applied to any flow variable of interest. An infinite value for T is not realizable in

any physical flow; and a practical finite selection of T is sufficient if it is long relative

to the maximum period of the turbulent velocity fluctuations [98].

Spatial averaging, which involves an average over the fluid volume and requires

integration over all spatial coordinates, is appropriate for spatially homogeneous tur-

bulence. For a turbulent flow that, on the average, is uniform in all directions, spatial

averaging can be expressed as

~uV(t) = lim
V−→∞

1

V

∫∫∫

V

~u(~x, t)dV , (2.2)

where ~uV(t) is again the mean value.

The most general type of Reynolds averaging suitable for turbulent flows that

vary in both space and time is ensemble averaging. As an illustration, the ensemble-

averaged velocity, ~uE(~x, t), is defined by

~uE(~x, t) = lim
N−→∞

1

N

N∑

n=1

~un(~x, t) , (2.3)

where N represents the number of identical experiments and ~uE(~x, t) is the ensemble

average velocity. Clearly, for both stationary and homogeneous isotropic turbulence
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(an ergodic random process), the averages of Equations (2.1), (2.2) and (2.3) are all

equal.

Reynolds averaging procedures were introduced for incompressible flows, but they

can also be applied to the compressible case. In applying Reynolds averaging to

compressible flows, one will encounter some additional complexities when establishing

suitable closure approximations. It can be shown (see, for example, Wilcox [98]) that

the use of the time-averaged procedure for compressible conservation equations yields

additional terms without analogs in the laminar equations and further approximations

to the correlations between the density and velocity fluctuations are needed. This

complexity can be easily seen from the Reynolds-averaged continuity equation given

by

∂ρ̄

∂t
+ ~∇ ·

(
ρ̄~u+ ρ′~u′

)
= 0 , (2.4)

where ρ′~u′ is the Reynolds-averaged correlation between fluctuations of density and

velocity, ρ′ and ~u′, respectively. This term does not appear in the original continu-

ity equation and requires modelling. Reynolds-averaging applied to the momentum

equation introduces even further complications.

In 1965, Favre suggested a density-weighted averaging procedure that results in

great mathematical simplification to the time-averaged equations. For turbulent com-

busting flows considered in this thesis work, there are density and temperature fluctu-

ations in addition to velocity and pressure fluctuations and these fluctuations are not

small. Therefore, the Favre averaging procedure is employed in this study. From this

point on, Favre averaging shall be considered. It is therefore worthwhile to review

the Favre (mass-averaging) procedure and some notational conventions in support of

understanding the Favre-averaged equations to be described in the next section.

The mass-averaged velocity vector, ~̃u, is defined by

~̃u =
1

ρ̄
lim

T−→∞

1

T

∫ t+T

t

ρ(~x, τ)~u(~x, τ)dτ , (2.5)

where ρ̄ is the conventional Reynolds-averaged density and ~u = ~̃u+ ~u′′ with ~u′′ being

the mass-weighted fluctuating velocity. Equation (2.5) can be expressed in terms of
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conventional Reynolds averaging as

ρ̄~̃u = ρ~u = ρ̄~u+ ρ′~u′ . (2.6)

Substituting Equation (2.6) into Equation (2.4) one arrives at the Favre-averaged

continuity equation given by

∂ρ̄

∂t
+ ~∇ ·

(
ρ̄~̃u
)

= 0 , (2.7)

which, as desired, has an identical form to the original (laminar) form of the equation.

For simplicity, throughout the rest of this thesis, for mean (mass-averaged) quantities,

the symbol “˜” will be dropped. For example, ~u is used to denote the Favre-averaged

mean velocity vector; for the Reynolds-averaged density, ρ̄, the symbol “¯” , will also

be dropped for convenience.

2.1.2 Favre-Averaged Equations

A mathematical model based on the Favre-averaged Navier-Stokes equations for

a compressible thermally perfect reactive mixture of gases has been formulated and

is used herein to describe turbulent non-premixed combustion processes. In this

formulation, the continuity, momentum, and energy equations for the reactive mixture

of N species are

∂ρ

∂t
+ ~∇ · (ρ~u) = 0 , (2.8)

∂

∂t
(ρ~u) + ~∇ ·

(
ρ~u~u+ p

~~I
)

= ~∇ ·
(
~~τ +

~~λ

)
, (2.9)

∂

∂t
(ρe) + ~∇·

[
ρ~u

(
e+

p

ρ

)]
= ~∇·

[(
~~τ +

~~λ

)
· ~u
]

+ ~∇ ·
(
Dk

~∇k
)
− ~∇ · (~q + ~qt) ,

(2.10)

where ρ is the time-averaged mixture density, ~u is the Favre-averaged mean velocity

of the mixture, p is the time-averaged mixture pressure,
~~I is the identity tensor,

e = |~u|2/2 +
∑N

n=1 cnhn − p/ρ+ k is the Favre-averaged total specific mixture energy

with hn being the species enthalpy, k is the specific turbulent kinetic energy, k =

~u′′ · ~u′′, and Dk is the coefficient for the diffusion of the turbulent energy (Dk =
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µ+µtσ
∗). In addition, µ is the total molecular viscosity of the mixture, µt is turbulent

eddy viscosity, σ∗ is a turbulence model constant, and both are described later in

this chapter), ~~τ and
~~λ are the molecular and turbulent Reynolds stress tensors

(dyads), respectively, and ~q and ~qt are the molecular and turbulent heat flux vectors,

respectively. The mixture pressure is given by the ideal gas law

p =

N∑

n=1

ρcnRnT , (2.11)

where Rn is the species’ gas constant and T is the mixture temperature. The molecular

fluid stress tensor, ~~τ , is defined as

~~τ = 2µ(
~~S − 1

3

~~I ~∇ · ~u)

where
~~S is the mean strain rate tensor. The transport equation describing the time

evolution of the species mass fraction, cn, is given by

∂

∂t
(ρcn) + ~∇ · (ρcn~u) = − ~∇ ·

(
~J n + ~J tn

)
+ ρẇn , (2.12)

where ẇn is the time-averaged or mean rate of the change of the species mass fraction

produced by the chemical reactions and ~J n and ~J tn are the molecular and turbulent

diffusive fluxes for species n, respectively.

Fourier’s law is used to represent the thermal diffusion caused by the random

thermal motion and turbulence. The molecular heat flux and the laminar diffusive

species flux are modelled using Fourier’s and Fick’s laws, respectively, and given by

~q = −
(
κ ~∇T −

N∑

n=1

hn
~J n

)
(2.13)

~J n = −ρDn
~∇cn (2.14)

where κ is the thermal conductivity of mixture, Dn is the molecular diffusivity of

species n relatively to the major species and obtained from the given Schmidt num-

ber Sc using the relation of Dn =µ/ρSc, and hn is the absolute (chemical and sensible)

internal enthalpy for species n. It is important to point out that the time-averaged re-

action rate is a key problem in turbulent combustion modelling. Details for modelling

this source term are given in Section 2.4.2.
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Turbulent contributions to thermal conductivity and species diffusivity are mod-

elled by making an analogy between momentum and heat transfer. The turbulent

heat flux and the turbulent species flux are modelled in a similar fashion to their

molecular counterparts and given by

~qt = −
(
κt~∇T −

N∑

n=1

hn
~J tn

)
, (2.15)

~J tn = −ρDtn
~∇cn , (2.16)

where κt is the turbulent thermal conductivity of the mixture and Dtn is the turbulent

molecular diffusivity of species n. Introducing the turbulent Prandtl and Schmidt

numbers, Prt and Sct, both of which are taken to be constant (Prt =0.9 and Sct =1),

assume κt =µtcp/Prt and Dtn =µt/ρSct.

Note that employing constant values for turbulent Prandtl/Schmidt numbers over

the domain of interest assumes that the scalar fluctuations are proportional to the

local velocity fluctuations. If a uniform proportionality constant can be applied,

then no further equations need to be solved. However, the assumption of constant

values of turbulent Prandtl and Schmidt numbers becomes problematic as the flow

becomes more complex and, in general, substantive variations of these parameters in

different regions of the flow are to be expected. For flows where high Mach number

compressibility effects must be considered and variations due to compressibility can

occur for both turbulent Prandtl and Schmidt numbers, models that allow for variable

turbulent Prandtl- and Schmidt-numbers may be required [99].

The averaging process for the Navier-Stokes equations described above has re-

sulted in some unknown quantities, for example, the turbulent Reynolds stress ten-

sor,
~~λ = −ρ~u′′~u′′. The correlations reflect the influence of the turbulence on the

mean flow solution. Modelling of these unknowns in terms of the mean or averaged

variables is required to close the system of equations. The role of the turbulence

modelling is to provide appropriate approximations for these unknown or unclosed

terms. The turbulence modelling closure adopted in this thesis work is discussed in

the next section to follow.
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2.2 Turbulence Model

2.2.1 Introduction

The modified two-equation k-ω model of Wilcox [98] is used in this thesis work

to model the unresolved turbulent flow quantities. The brief review of the turbulence

modelling provided in what follows has been intentionally kept short, as our primary

objective is to present an overview of the selected turbulence model. However, it is

extremely important to keep in mind that the quality of a reacting-flow simulation

will heavily depend on the performance of the turbulence model. Discussion of issues

(such as boundary conditions, Reynolds and Schmidt number effects, applicability of

a model to a particular flow) that can greatly affect the performance of a turbulence

model are beyond the scope of this thesis. Care must be given when applying these

two-equation turbulence models to complex shear flows. Refer to the textbooks by

Wilcox [98], Pope [100], and Fox [12] for in-depth discussions of scalar-field evolution

turbulence modelling techniques based on the eddy-viscosity concept.

As discussed above, the Reynolds stresses, −ρ~u′′~u′′, an unclosed term resulting

from the Favre-averaging process, must be modelled. As in most conventional tur-

bulence models, the Boussinesq approximation is used to relate the Reynolds stress

tensor,
~~λ, to the mean flow strain-rate tensor using a turbulent eddy viscosity, µt,

~~λ = −ρ~u′′~u′′ = 2µt(
~~S − 1

3
~~I ~∇ · ~u) − 2

3
~~Iρk . (2.17)

Equation (2.17) converts the problem of modelling the six components of the Reynolds

stress tensor to one of modelling the scalar field µt.

The simplest models for the turbulent eddy viscosity require no additional trans-

port equations and are classified as algebraic models. For example, the assumption

that µt is constant can be applied to only a small class of turbulent flows. Mixing

length models relate the turbulent eddy viscosity to the mean rate of strain by in-

troducing a characteristic mixing length. These models have limited applicability

but are rather simple to apply. Readers interested in more background information

on algebraic models for the turbulent eddy viscosity should consult Wilcox [98] and

Pope [100].
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In terms of complexity and predictive capabilities, the next level of turbulence

modelling introduces a transport equation to describe the variation of the turbulent

eddy viscosity throughout the flow domain and can be categorized as one-equation

models. While other approaches are possible [101] in many cases, the turbulent eddy

viscosity is modelled by

µt(~x, t) = lmix

√
k(~x, t) , (2.18)

where lmix is the mixing length assumed to be known or given by an algebraic rela-

tionship. The corresponding velocity scale is determined from the turbulent kinetic

energy and the model is closed by solving the transport equation for k of the form

∂

∂t
(ρk) + ~∇ · (ρk~u) =

~~λ : ~∇~u+ ~∇ ·
[(
µ+

µt

σk

)
~∇k
]
− ρǫ , (2.19)

where ǫ is the dissipation rate of the turbulent kinetic energy and takes on the form

ǫ ∼ k
3
2/lmix. The principal weakness of the one-equation model is that the mixing

length must be specified by the user or determined from an algebraic relation. Indeed,

for complex turbulent flows, it is unreasonable to expect that the mixing length can

be adequately represented by an algebraic relationship.

In order to effectively remove the need to specify the mixing length, a second trans-

port equation can be introduced. A widely used two-equation model is the k-ǫ model,

wherein a transport equation for the turbulent dissipation rate is formulated [98].

The standard k-ǫ model employs the following equation for ǫ:

∂

∂t
(ρǫ) + ~∇ · (ρǫ~u) = Cǫ1

ǫ

k
~~λ : ~∇~u+ ~∇ ·

[(
µ+

µt

σǫ

)
~∇ǫ
]
− Cǫ2

ρǫ2

k
, (2.20)

where the model constants have been “tuned” by fitting model predictions to ex-

perimental data for canonical flows: Cǫ1 = 1.44, Cǫ2 = 1.92, and σǫ = 1.3. The

turbulent eddy viscosity is specified νt = Cµ k
2

ǫ
and Cµ = 0.09. However, it must be

recognized that different values will be needed to model specific flows accurately, and

thus the “standard” values represent a compromise chosen to give the “best overall”

results [98, 100].

Other two-equation models have been proposed and developed based on the time

evolution of alternative scalar fields. One of the more popular, perhaps, is the k-ω
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model which is used in this thesis work. One noteworthy advantage of the k-ω model

over the k-ǫ model is its treatment of the near-wall region in boundary-layer flows,

especially for low-Reynolds-number flows. The k-ω model can be applied well into

the viscous sub-layer, while, without modifications in the form of damping functions,

the k-ǫ model requires the first grid point away from the wall to lie in the log layer.

2.2.2 k-ω Model

In the k-ω model, the turbulent eddy viscosity is prescribed by µt =ρk/ω. Trans-

port equations are solved for turbulent kinetic energy, k, and the specific dissipation

rate, ω, given by

∂

∂t
(ρk) + ~∇ · (ρk~u) =

~~λ : ~∇~u+ ~∇ ·
[
(µ+ µtσ

∗) ~∇k
]
− β∗ρkω , (2.21)

∂

∂t
(ρω) + ~∇ · (ρω~u) = α

ω

k
~~λ : ~∇~u+ ~∇ ·

[
(µ+ µtσ) ~∇ω

]
− βρω2 , (2.22)

where σ∗, β∗, α, σ, and β are closure coefficients for the two-equation model. The

latter are given by

α =
13

25
, β = β◦fβ , β∗ = β∗

◦fβ∗ , σ = σ∗ =
1

2
, (2.23)

with

β◦ =
9

125
, β∗

◦ =
9

100
, (2.24)

fβ =
1 + 70χω
1 + 80χω

, fβ∗ =






1 χk ≤ 0 ,

1 + 680χ2
k

1 + 400χ2
k

χk > 0 ,
, (2.25)

and

χω =

∣∣∣∣∣∣
(
~~Ω ⊗ ~~Ω) :

~~S

(β∗
◦ω)3

∣∣∣∣∣∣
, χk =

1

ω3
~∇k · ~∇ω . (2.26)

The tensors
~~Ω and

~~S are the vorticity and strain rate tensors, respectively.

Note that the Morkovin’s hypothesis is invoked here in the modelling of turbulent

quantities for compressible flows [98]. The effects of compressibility on the turbulence

are assumed small and, only the variation of mean density is take into account for in

the turbulence model formulation. In particular, no modifications are made to the

k-ω turbulence model coefficients in terms of compressibility-related corrections.
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2.2.3 Near-Wall Turbulence Treatment

Both low-Reynolds-number and wall-function formulations of the k-ω model are

used for the treatment of near-wall turbulent flows, with a procedure for automatically

switching from one to the other, depending on mesh resolution. In the case of the

low-Reynolds-number formulation, it can be shown that

lim
y→0

ω =
6ν

βy2
, (2.27)

where y is the distance normal from the wall [98]. Rather than attempting to solve

the ω-equation directly, the preceding expression is used to specify ω for all values

of y+ ≤ 2.5, where y+ ≡ uτy/ν. Note that uτ is the friction velocity defined by

u2
τ = τw/ρ where τw is the wall shear stress. The procedure for obtaining this value

is given below. Provided there are 3-5 computational cells inside y+ = 2.5, this

procedure reduces numerical stiffness, guarantees numerical accuracy, and permits

the k-ω model to be solved directly in the near-wall region without resorting to wall

functions. In the case of the wall-function formulation, the expressions

k =
u2
τ√
β∗

o

, ω =
uτ√
β∗

oκy
, (2.28)

are used to fully specify k and ω for y+≤30-250, where κ is the von Kármán constant,

0.41.

In this thesis research, a procedure has also been developed to automatically switch

between these two approaches, depending on the near-wall mesh resolution. In this

procedure, the values of k and ω are approximated by

k =
u2
τ√
β⋆o

(
min(y+, 30)

30

)2

, ω = ωo

√

1 +

(
ωwall

ωo

)2

, (2.29)

where ωo = 6ν
βy2

and ωwall = uτ√
β∗κy

. This automatic near-wall treatment readily ac-

commodates situations during adaptive mesh refinement (as described in Chapter 4)

where the mesh resolution may not be sufficient for directly calculating near-wall

turbulence using the low-Reynolds-number formulation.

The quantity, y+, is the dimensionless distance from the wall surface and is defined

by y+ ≡ uτy/ν. This term must be evaluated in order to apply above boundary
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conditions for turbulent kinetic energy and specific dissipation rate during solution

procedures. The distance normal from the wall surface, y, must be computed after

the grid is created and/or is refined (coarsened), and the minimum value of y is

determined for each cell after searching all the possible values computed from all the

solid wall surfaces. The friction velocity, uτ , is determined either directly or iteratively

using Newton’s method by using the relations below depending on the flow regime:

u+ =




y+ for viscous sublayer ,

1
κ

ln(y+) + C for log layer κ ≈ 0.41 , C = 5.0 .
(2.30)

Equation (2.31) below, derived by substituting u+≡u/uτ and y+≡uτy/ν into Equa-

tion (3.30), is used to determine the friction velocity

f(uτ ) =






uτ −
√

uν
y

for viscous sublayer ,

uτ − κu
ln(E uτ y/ν)

for log layer E = eκC .
(2.31)

2.3 Thermodynamic and Transport Properties

In addition to the turbulence quantities, thermodynamic relationships and trans-

port coefficients are also required to close the system of equations given above. In this

study, the compressible reactive gaseous mixture is assumed to be thermally perfect,

i.e., a gaseous mixture in which the specific heats are only functions of tempera-

ture [102].

Thermodynamic and molecular transport properties of each gaseous species are

prescribed using the empirical database compiled by Gordon and McBride [103,104],

which provides curve fits for the species enthalpy, hn; specific heat, cpn; entropy;

viscosity, µn; and thermal conductivity, κn, as functions of temperature, T . For

example, the enthalpy and viscosity for a particular species are given by

hn = RnT − a1,nT
−2 + a2,nT

−1 lnT + a3,n +
a4,n

2
T +

a5,n

3
T 2+

a6,n

4
T 3 +

a7,n

5
T 4 + b1T

−1 + ∆hofn , (2.32)

lnµn = An lnT +
Bn

T
+
Cn

T 2
+Dn , (2.33)
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where ak,n, An, Bn, Cn, and Dn are the coefficients for the curve fits. The Gordon-

McBride data set contains curve fits for over 2000 substances, including 50 reference

elements.

The molecular viscosity, µ, and thermal conductivity, κ, of the reactive mixture

are determined using the mixture rules of Wilke [105] (Equation (2.34)) and Mason

and Saxena [106] (Equation (2.35)), respectively, and are given by

µ =

n=N∑

n=1

µn
ρcn
Mn∑j=N

j=1
ρcn
Mn

φi,j

, (2.34)

κ =
N∑

n=1

κn

1 + 1
Xn

∑N
i=1,i 6=n(XiGni)

. (2.35)

2.4 Closure of the Chemical Source Terms

2.4.1 Reduced Chemical Kinetics

The primary goal of this research is to establish a computational framework for

predicting complex reacting flows in practical combustor geometries. For this purpose,

the use of simplified chemical mechanisms for gaseous fuels and turbulence-chemistry

interaction models has allowed for the validation of the proposed solution algorithm

without the added complexities and computational overhead of more complex mech-

anisms and sophisticated turbulence-chemistry interaction models.

For the gaseous methane-air combustion considered in the present work, the fol-

lowing reduced, one-step, five-species, chemical kinetic scheme of Westbrook and

Dryer [107] is used:

CH4 + 2 O2 → CO2 + 2 H2O . (2.36)

The five species are methane (CH4), oxygen (O2), carbon dioxide (CO2), water (H2O),

and nitrogen (N2). Nitrogen is taken to be inert.

2.4.2 Modelling Turbulence/Chemistry Interactions

The mean reaction rates, ω̇n, in Equation (2.12) describe the mean production and

consumption of each of the chemical species due to the chemical reactions and strong
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interactions between turbulence and chemistry. The accurate prediction of mean

reaction rates, which can be strongly influenced and enhanced by small-scale turbulent

mixing, represents the central problem and challenge of turbulent combustion. A large

number of mean reaction rate formulations may be found in the literature [11, 108–

110]. Various mean reaction rate models are described and discussed by Bray [111].

In this work, we shall focus on the eddy dissipation model (EDM) [112].

The interaction between turbulence and chemical reactions is best characterized

in terms of the turbulent Damköhler number, which is defined as the ratio of the

characteristic turbulent flow time, τt, to the characteristic chemical time, τc, i.e.,

Da =
τt
τc
. (2.37)

As the turbulent Damköhler number approaches infinity, the chemical time scales

are much smaller than those of the fluid dynamics. In this case, equilibrium (fast)

chemistry can be assumed. If the Damköhler number is close to zero, the chemical

reactions occur more slowly compared to fluid transport phenomena, and then a

frozen-chemistry fluid can be assumed. The greatest interaction between turbulence

and chemical reactions will occur when the Damköhler number is of the order of unity

and in this case one must use finite-rate chemistry to model the chemical reactions.

The Arrhenius approach can be used to describe the mean reaction rates (ki-

netically controlled) for chemical species by neglecting the effects of turbulence on

combustion, i.e., the mean reaction rate is assumed to be only function of mean

quantities. The formula for the mean reaction rate for species n is given by

ω̇n =
Mn

ρ

Nr∑

r=1

(ν
′′

n,r − ν
′

n,r)
{
κf,r

N∏

i=1

[
ρci
Mi

]ν′i
− κb,r

N∏

i=1

[
ρci
Mi

]ν′′i }
, (2.38)

where ν
′

n,r and ν
′′

n,r are the stoichiometric coefficients for the reactants and for the

product (related to species n in reaction r), respectively, Mi is the molecular mass

of species i, κf,r and κb,r are forward and backward reaction rates, respectively, and

Nr is the total number of reactions. The Arrhenius approach is only applicable for

turbulent combustion at very low Damköhler numbers (i.e., Da≪ 1 and so τc ≫ τt),

under which conditions the reactants mix rapidly and burn slowly.
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For high Damköhler number, the eddy dissipation model has been proposed. The

eddy dissipation model is a direct extension to non-premixed/diffusion flames of the

eddy break-up closure originally proposed for turbulent premixed combustion [112].

The latter is based on a phenomenological analysis of turbulent combustion assuming

high Reynolds (Re ≫ 1) and Damköhler (Da ≫ 1) numbers. The key idea is that

chemistry does not play an explicit role while turbulent motions control the reaction

rate. The mean reaction rate is thus mainly controlled by the characteristic turbulent

time for turbulent mixing.

What follows now is a brief description of the eddy dissipation model for non-

premixed combustion. Consider a simple, single step and irreversible chemical reac-

tion between a fuel and its oxidizer:

F + s O → (1 + s) P

where s is the mass stoichiometric coefficient. In terms of mass fractions, this chemical

reaction may be written;

ν
′

F cF + ν
′

O cO → ν
′′

P cP ,

where ν
′

i and ν
′′

i are the stoichiometric coefficients of the reactants and products,

respectively. For non-premixed flames, Magnussen and Hjertager in 1976 proposed

the following eddy dissipation model for estimating the mean reaction rates:

ω̇F = −Cedm
1

τt
min

(
cF,

cO
s
, β

cP
(1 + s)

)
, (2.39)

where model constants, Cedm and β can be adjusted to incorporate various chemical

features. In this study, Cedm = 4.0 and β = 0. Clearly, the reaction rate is limited

by the deficient species and the turbulence mixing time. When β 6= 0, the products

can also limit the rate since “this accounts for the burnt gases bringing the energy to

burn the fresh reactants” [108].

The turbulent time scale, τt, is estimated from the dissipation rate per unit tur-

bulent kinetic energy, ω, and given by

τt ∝
1

ω
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Accordingly, ω̇O and ω̇P may be computed by

ω̇O = s ω̇F ,

ω̇P = −(1 + s) ω̇F .

The mass stoichiometric coefficient, s, can be related to the stoichiometric coefficients

ν
′

i by

s =
ν

′

OMO

ν
′

FMF

,

1 + s =
ν

′′

PMP

ν
′

FMF

,

where MF, MO and MP are the molecular mass for fuel, oxidizer and product,

respectively. In terms of molar stoichiometric coefficients, Equation (2.39) can be

written as:

ω̇F = −Cedm ω ν
′

FMF min

(
cF,

cO
ν

′

OMO

, β
cP

ν
′′

PMP

)
. (2.40)

The eddy dissipation model is manifestly easy to adopt for computational im-

plementation because the reaction rate is calculated using mean quantities of tem-

peratures and mass fractions without additional transport equations. It is useful for

the prediction of diffusion flames as well as for partially premixed flames. However,

extensions of this model to full chemistry mechanisms is not straightforward [108].

In this work, the individual species mean reaction rate is taken to be the minimum

of the rates given by the finite-rate chemical kinetics (i.e., the law of mass action and

Arrhenius reaction rates, Equation (2.38)) and the EDM value (Equation (2.39)) due

to regions with different turbulence levels. In regions with high-turbulence levels, the

eddy lifetime is short, so mixing is fast and, as a result, the reaction rate is kineti-

cally controlled. On the other hand, in regions with low-turbulence levels, small scale

mixing may be slow and limits the reaction rate. In this limit, the turbulent mixing

rates are more important. Accordingly, the mean reaction rate is primarily controlled

by the turbulent time scale τt (i.e., the time scale for the mixing of fuel and oxidizer

by the turbulent motion) [108].





Chapter 3

Finite-Volume Scheme

This chapter presents the main elements of the finite-volume scheme, the time-

marching scheme, and the full approximate storage (FAS) multigrid algorithm used

in the proposed numerical algorithm. Section 3.1 briefly summarizes the key elements

involved in the finite-volume scheme and presents the details on the numerical flux

evaluations including both hyperbolic and elliptic parts. Section 3.2 presents the time

marching scheme employed to integrate the coupled system of nonlinear ordinary

differential equations in time. For two-dimensional flows, a preconditioned multigrid

algorithm with a multi-stage time marching scheme has been implemented and is used

to improve convergence. Section 3.3 reviews the preconditioned multigrid concept

and the matrix preconditioner devised in this study. The incorporation of the finite-

volume scheme within a parallel block-based AMR procedure is discussed later in

Chapter 4.

3.1 Finite-Volume Method

The finite-volume method used herein starts from the integral form of the con-

servation equations. Applying the divergence theorem to the differential form of the

system of governing equations, (Equations (2.8)–(2.10), (2.12), (2.21), and (2.22)),

31
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one arrives at the integral form

d

dt

∫

V (t)

UdV +

∮

Ω(t)

~n · ~F dΩ =

∫

v(t)

SdV , (3.1)

where U is the vector of flow solution variables, ~F is the flux dyad, S is the source

vector, V is the control volume, Ω is the closed surface of the control volume, and ~n

is the unit outward vector normal to the closed surface. In the finite-volume method,

the integral form of the conservation law is enforced discretely in each of many small

contiguous control volumes making up a computational mesh. The conservation of

any flow property, for example mass, momentum or energy, within each finite control

volume can be expressed as a balance between the net solution fluxes and sources

tending to increase or decrease its value. Solution fluxes can be generally categorized

as either arising from wave propagation phenomena (hyperbolic fluxes) or from dif-

fusion processes (elliptic fluxes). The reader is referred to the textbooks by Lomax,

Pulliam, and Zingg [113] and by Hirsch [114, 115] for details regarding conservation

equations and their properties.

To briefly illustrate the main elements of a finite-volume method, consider the

discretization of the Favre-averaged Navier-Stokes equations over a set of control

volumes in a two-dimensional axisymmetric coordinate frame where it is assumed that

the control volumes (areas in two space dimensions) do not vary with time. First, the

averaged value of U and of S within the cell can be defined by an integration over

the control volume as follows:

U ≡ 1

A

∫

A

U dA , (3.2)

S ≡ 1

A

∫

A

S dA , (3.3)

where A is the cell area. Substituting these definitions into Equation (3.1), the final

form of Equation (3.1) for a two-dimensional coordinate frame can be written as

dU

dt
+

1

A

∮

Ω

~F · ~n dℓ = S(U) , (3.4)

where A is the cell area and dℓ is an element of the closed contour containing the

control volume or cell of interest. Assuming that the control volume, (i, j), is a
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polygon defined by Nf straight-line segments or cell faces (line segments, 4 faces for

quadrilateral cells), Equation (3.4) can be rewritten in semi-discrete form as

dUi,j

dt
= − 1

Ai,j

Nf∑

m=1

~Fi,j,m · ~ni,j,m ∆li,j,m + Si,j(U) , (3.5)

or
dUi,j

dt
= −Ri,j(U) , (3.6)

where ~nk and ∆lk are the outward unit outward norm and length of the kth cell face

(line segment), respectively, and Ri,j(U) is the so-called residual operator for the

control volume (i, j).

The solution procedure for solving Equation (3.6) then involves three steps: re-

construction, flux evaluation and evolution. First, given the value of U for each

control volume, an approximation to U(~x) in each control volume is constructed and

used to find U at the boundaries of the control volume. The accuracy of the evalu-

ation of cell-averaged solution and its derivatives for the cell-normal flux evaluation

is dictated by the accuracy of this solution reconstruction procedure. Details of the

piecewise linear limited reconstruction procedure used in this work are presented in

Section 3.1.3. Next, the flux, ~F(U), at the boundary is evaluated as a function of

the discontinuous states on either side of the interface, where the discontinuities arise

due to the piecewise approximations for U in each control volume. In this work, the

hyperbolic numerical flux for each cell-face is evaluated as the approximate solution

of a Riemann problem, such as given by the Roe flux function [116] or the Harten-

Lax-van-Leer-Einfeldt (HLLE) flux function [117], while the viscous component of the

cell-face fluxes is evaluated by employing a centrally-weighted diamond-path recon-

struction procedure as described by Coirier and Powell [118] in the two-dimensional

case. In the three-dimensional case, the viscous component of the cell-face fluxes is

evaluated using the formula proposed by Mathur and Murthy [119]. The evaluation

of the numerical fluxes is discussed in Section 3.1.3. Finally, the solution is evolved

forward in time using an appropriate time-marching method thereby obtaining new

values for U. Details of the time marching method adopted herein can be found in

Section 3.2.
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The remainder of this chapter outlines aspects of the proposed finite-volume

scheme for solution of the Favre-averaged Navier-Stokes equations for a compress-

ible, thermally perfect, reactive, mixture in two and three space dimensions. For

notational simplicity, in the remainder of the thesis, the bar sign “¯” is dropped for

cell-averaged solution and source vectors.

3.1.1 Conservation Forms of Governing Equations

As noted, the present work considers solving turbulent combusting flows for both

two-dimensional axisymmetric and three-dimensional coordinate frames. The diver-

gence form of Equation (3.1) is obtained by applying Gauss’s theorem to the flux

integral, leading to
∂U

∂t
+ ~∇ · ~F = S , (3.7)

where the flux dyad, ~F, and source vector, S, are given by

~F=





(F − Fv,G − Gv)

(F − Fv,G − Gv,H −Hv)
S=




− (Sa−SaV)

r
+ St + Sc for axisymmetric ,

St + Sc for three dimensions .

The solution vector is given by U, F and FV are the inviscid and viscous flux vectors in

the radial direction for axisymmetric flows and in the x direction for three-dimensional

flows, respectively, and G and Gv are the inviscid and viscous flux vectors in the axial

direction for the axisymmetric system and in the y direction for the three-dimensional

case, respectively, and H and Hv are the inviscid and viscous flux vectors in the

z direction for three-dimensional flows. Finally, Sa and Sav are the source terms

associated with the axisymmetric coordinate, and St and Sc are the source terms

associated with the turbulence modelling and finite-rate chemical kinetics.

Equations (2.8)–(2.10), (2.12), (2.21), and (2.22) can be re-expressed for both the

two-dimensional (axisymmetric) case as

∂U

∂t
+
∂(F − Fv)

∂r
+
∂(G − Gv)

∂z
= −(Sa − Sav)

r
+ St + Sc , (3.8)

and the three-dimensional case as

∂U

∂t
+
∂ (F − Fv)

∂x
+
∂ (G −Gv)

∂y
+
∂ (H − Hv)

∂z
= St + Sc , (3.9)
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where r and z denote the radial and axial coordinates in axisymmetric system, and

x, y, and z are the coordinates of the three-dimensional Cartesian frame.

The elements of the conserved solution vector, flux vectors, and source vectors are

provided in this section for the three-dimensional case. Details of those terms for the

two-dimensional case are not repeated here. The components of the solution, flux,

and source vectors for the two-dimensional case are given in appendix A. The vector

of conserved solution variables for the three-dimensional case, U, is given by

U =
[
ρ, ρvx, ρvy, ρvz, ρe, ρk, ρω, ρc1, . . . , ρcN

]T
, (3.10)

and the inviscid and viscous x-direction flux vectors, F and Fv, can be written as

F=




ρvx

ρv2
x + p

ρvxvy

ρvxvz

(ρe+ p)vx

ρkvx

ρωvx

ρc1vx

...

ρcNvx




, Fv =




0

τxx + λxx

τxy + λxy

τxz + λxz

W − qx − qtx + (µ+ µtσ
∗)∂k
∂x

(µ+ µtσ
∗)∂k
∂x

(µ+ µtσ)∂ω
∂x

−J1x −Jt1x

...

−JNx −JtNx




, (3.11)

where W = vx(τxx + λxx) + vy(τxy + λxy) + vz(τxz + λxz). The y- and z-direction flux

vectors G, Gv, H, and Hv have similar forms and are given in appendix A.

The source vectors, St and Sc, appearing in Equations (3.9) contain terms related

to the finite rate chemistry and turbulence modelling and have the form

St =
[

0, 0, 0, 0, 0, P − β∗ρkω, αω
k
P − βρω2, 0, . . . , 0

]
, (3.12)

Sc =
[

0, 0, 0, 0, 0, 0, 0, ρω̇1, . . . , ρω̇N

]
, (3.13)

with

P = λxx
∂vx

∂x
+ λxy(

∂vx

∂y
+
∂vy

∂x
) + λxz

∂vx

∂z
+ λyy(

∂vy

∂y
+
∂vz

∂x
) + λyz(

∂v

∂z
+
∂vz

∂y
) + λzz

∂vz

∂z
,

(3.14)
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and vx, vy, and vz are the x, y, and z velocity components; qx, qy, and qz are the x, y,

and z components of the heat flux; τxx, τxy, τyy, τxz, τyz, and τzz are the components

of the viscous fluid stresses; and λxx, λxy, λxz, λxz, λyz, and λzz are the Reynolds

stresses.

3.1.2 Semi-Discrete Form for Three-Dimensional Flows

Equation (3.5) describes the coupled ordinary differential equations resulting from

the finite-volume spatial discretization for two-dimensional flows. For the sake of

completeness, the semi-discrete form of the three-dimensional conservation equations

arising from application of the finite-volume discretization procedure is also given

here. For three dimensions, the system of governing Equation (3.9) is integrated over

hexahedral cells of a structured body-fitted multi-block hexahedral mesh. In doing

so, the original PDEs are converted to a set of coupled ODEs which can be expressed

as

dUi,j,k

dt
= − 1

Vi,j,k

Nf∑

m=1

~Fi,j,k,m · ~ni,j,k,m ∆Ai,j,k,m + (St + Sc)i,j,k = Ri,j,k(U) , (3.15)

where Vi,j,k is the cell volume, Nf is the total number of cell faces (8 faces for hexahedral

computational cells), and ~ni,j,k,m and ∆Ai,j,k,m are the unit outward normal vector

and the area of cell-face m, respectively. As mentioned above, the numerical fluxes

though the cell boundaries, F, given in Equation (3.15), include contributions from

both hyperbolic and elliptic (inviscid and viscous) terms. The evaluation of these

numerical fluxes are described next.

3.1.3 Inviscid (Hyperbolic) Flux Evaluation

Godunov-type finite-volume methods make use of the solution of locally one-

dimensional Riemann problems. The solution of the Riemann problem provides a

means for evaluating the numerical flux function at the cell boundaries. A higher-

order Godunov-type finite-volume upwind formulation based on approximate Rie-

mann solvers with a least-squares piece-wise limited linear solution reconstruction
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procedure is used to evaluate the components of the hyperbolic solution flux. The

emergence of high-resolution Godunov-type methods motivated the design of effective

limiters for use in one-dimensional higher-order reconstructions [120]. Algorithms

with high resolution in smooth regions and monotone resolution of discontinuities

were devised based on the original concepts of nonlinear limiters introduced by Boris

and Book [121] and van Leer [122]. These concepts which prevent the occurrence of

numerical oscillations, were later generalized via the concept of total variation dimin-

ishing (TVD) by Harten [123]. The reader is referred to the paper by van Leer [120]

for a systematic review and comparisons of various techniques related to this topic.

Piecewise Limited Linear Reconstruction

The solution reconstruction used in this work can be described as follows. For

higher-order accuracy (i.e., second-order in smooth regions), a spatial reconstruction

of the solution in each computational cell is required. The values of the left and right

solution states at a cell interface are determined by least-squares piece-wise limited

linear solution reconstruction. For example, for cell (i, j, k), at the cell interface (i+1
2
,

j, k), the flux has the form

~F(i,j,k,m) · ~n(i,j,k,m) = ~F

(
R
(
WL,WR, ~n(i,j,k,m)

))
,

where the ~n(i,j,k,1) with m = 1 corresponds to the outward unit norm of the cell inter-

face, R represents the solution of the Riemann problem, and WL and WR are the left

and right primitive solution vectors from the piece-wise limited linear reconstruction

procedure at the cell interface (i+1
2
, j, k), and are given by

WL = Wi,j,k + Φi,j,k
~∇Wi,j,k · ~dxL ,

WR = Wi+1,j,k + Φi+1,j,k
~∇Wi+1,j,k · ~dxR . (3.16)

In Equation (3.16), Φ is the slope limiter, ~dxL =~x− ~xi,j,k and ~dxR =~x− ~xi+1,j,k (~x is

the location of interface center), and Wi,j,k and Wi+1,j,k are cell-averaged primitive

solution vectors.
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The slope limiter, Φ, is introduced to limit the solution gradient in order to ensure

solution monotonicity. Both the Barth-Jespersen and the Venkatakrishnan slope lim-

iters have been implemented in this algorithm. The Barth-Jespersen limiter is given

by

Φi,j,k =






min

(
1,

Wmax−Wi,j,k

Wk−Wi,j,k

)
for Wk − Wi,j,k > 0

min

(
1,

Wmin−Wi,j,k

Wk−Wi,j,k

)
for Wk − Wi,j,k < 0

1 otherwise

, (3.17)

where Wmax = max(Wi,j,k,Wneighbours), Wmin = min(Wi,j,k,Wneighbours), and Wk is

the unlimited reconstructed solution value at the kth flux quadrature point. In many

cases, the use of highly-nonlinear limiters such as this can inhibit convergence to

steady state solutions. Venkatakrishnan [124] states that the Barth-Jespersen limiter

is active in the near-constant regions and responds to oscillations at the noise level

which is responsible for the convergence stall. The limiter proposed by Venkatakrish-

nan, a modification of the Barth-Jespersen limiter to help suppress oscillations in the

near-constant regions of the solution in a smooth manner, is expected to ameliorate

these convergence issues. The limiter can be expressed as

Φi,j,k =






φ

(
Wmax−Wi,j,k

Wk−Wi,j,k

)
for Wk − Wi,j,k > 0

φ

(
Wmin−Wi,j,k

Wk−Wi,j,k

)
for Wk − Wi,j,k < 0

1 otherwise

, (3.18)

where φ(y) is a smooth function given by

φ(y) =
y2 + 2y

y2 + y + 2
. (3.19)

In practice, the use of limiter freezing can also help in situations where convergence

might stall, i.e., the limiter is “frozen” after the residual has dropped to some prede-

fined level. However, for all the numerical solutions obtained in this research work,

the limiter freezing technique was not required.

The gradients of the primitive variables,~∇W, are determined by applying a least-

squares approach [125], a technique which is suitable for both structured and unstruc-

tured mesh and relies on a stencil formed by the nearest and possibly next to nearest



Section 3.1. Finite-Volume Method 39

neighbouring cells. For the boundary stencil, a layer of ghost cells containing bound-

ary condition information is used to generalize the procedure without reducing the

reconstruction stencil. Refer to Chapter 4 for additional information concerning ghost

cells. For a cell-centered discretization in three dimensions, the stencil is formed by

joining the nearest twenty-six neighbouring cell centroids. The approximate gradients

using the least-squares gradient construction procedure are obtained by minimizing

the error defined by

k=N∑

k=1

ǫ2ik =

k=N∑

k=1

(∆Wik − ~∇Wi · ~dxik)
2 , (3.20)

where ∆Wik =Wi−Wk, ~dxik =~xi−~xk, and N =8 for two dimensions, or N =26 for

three dimensions. The 3 by 3 system of linear algebraic equations resulting from the

minimization problem can be expressed as



(∆x)2 ∆x∆y ∆x∆z

∆x∆y (∆y)2 ∆y∆z

∆x∆z ∆y∆z (∆z)2







∂W
∂x

∂W
∂y

∂W
∂z


 =




W∆x

W∆y

W∆z


 , (3.21)

where

∆x2 =
1

N

N∑

k=1

∆x2
ki, (3.22)

∆x∆y =
1

N

N∑

k=1

∆xki∆yki, (3.23)

and

∆W∆x =
1

N

N∑

k=1

∆Wki∆xki . (3.24)

The other terms have a similar form. The above terms only depend on grid geometry

and so can be precomputed and stored.

Solutions of the 3×3 linear system represented by Equation (3.21) can be readily

obtained using Cramer’s rule. Mavriplis [126] suggested that the use of weighting in

Equation (3.20) as
k=N∑

k=1

wikǫ
2
ik with weighting factor, wik = 1√

~dxik· ~dxik

, results in a better
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conditioned system; however, for cell-centered discretizations on highly-stretched and

curved triangular meshes, it was found that both the unweighted and weighted least-

squares constructions fail to provide suitable gradient estimates. A weighted least-

squares approach is not used in this work. Alternative solution techniques for the

least-squares problem solution, such as QR factorization methods [127, 128] are also

not considered but may be the subject of future investigations.

Approximate Riemann Solvers

As discussed above, Godunov-type finite-volume methods require the solution of

locally one-dimensional Riemann problems. The Riemann problem is a special initial-

value problem with discontinuous initial states and self-similar solutions. It is posed at

the interface between adjacent cells. The solution of the Riemann problem provides a

means for evaluating the numerical flux function at the cell boundaries. One approach

is to make use of an exact solution procedure for the Riemann problem as outlined

by Gottlieb and Groth [129]. However, often an approximation is sufficient for use

in a finite-volume scheme, since only an interface flux is needed, and the details

of the sub-grid solution are averaged out after each time step. The most detailed

approximation for the wave system associated with the Riemann problem are found

in the solvers of Roe [116] which is based on a local linearization of the flow equations

and Osher [130], which replaces shock waves by inverted isentropic waves [131]. A

family of solvers in which a smaller or larger number of waves are “lumped” together

was presented by Harten, Lax, and van Leer (HLL) [132], which is particularly useful

when the detailed Riemann solution is complicated or when a steady flow solution is

sought in which certain kinds of waves never appear [133]. A desirable feature of the

upwind flux formula based on Roe’s approximate Riemann solver, is that it yields

a steady normal-shock structure, that contains at most one internal cell, whereas

the differential flux formulae of Osher [130] and van Leer [134] include one or two

internal cells. This property is lost for shocks oblique to the grid, which serves as a

motivation for the search of truly multi-dimensional upwind methods, such as residual

distribution schemes [135–137]. Note that a complete review of Riemann solvers is
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beyond the scope of the present thesis. The reader is again referred to the paper by

van Leer [120] for further details.

This thesis research considers both the Roe’s and the Harten-Lax-van Leer Ein-

feldt (HLLE) approximate Riemann solvers and details related to these two solvers

are given next. The Roe’s approximate Riemann solver is a rather ingenious way

of extending linear wave decomposition, which provides the exact solution to the

Riemann problem for linear hyperbolic systems, to the approximate solution of the

Riemann problem for nonlinear hyperbolic equations. In order to understand Roe’s

approach, consider the nonlinear system in one-space dimension of the form

∂U

∂t
+
∂F

∂x
=
∂U

∂t
+ A

∂U

∂x
= 0 , (3.25)

where A = ∂F
∂U

is the flux Jacobian matrix. Roe’s idea was to linearize the above

nonlinear system producing a constant coefficient “locally” linear system

∂U

∂t
+ Â

∂U

∂x
= 0 , (3.26)

where Â is a function of the local left and right values for U. Roe [116] suggested

that the following conditions should be imposed on Â, so that the resulting scheme

is conservative: (i) for any pair of (Ui,Ui+1), conservation requires that Fi+1 − Fi =

Â(Ui,Ui+1)(Ui+1 − Ui); (ii) for consistency, if Ui = Ui+1 = U, then one should

have Â(U,U) = A(U) = ∂F
∂U

; and (iii) Â has real eigenvalues with a complete set

of linearly independent eigenvectors so that the system remains strictly hyperbolic.

Roe’s numerical flux then has the form

F(UL,UR, ~n) =
1

2
(FL + FR) − 1

2

n∑

i

α̂i|λ̂i|r̂i , (3.27)

where αi is the wave amplitude (jump in the characteristic variables, related to left

eigenvectors of Â) based on the eigensystem decomposition of Â , λ̂i the wave speed,

and r̂i is the right eigenvector of Roe’s matrix, Â.

Once an approximate linearization is derived for the flux Jacobian matrix (cer-

tainly not a trivial problem, details on the construction of the Roe matrix can be

found [114–116,138]), the solution of the Riemann problem in terms of the eigensys-

tem decomposition can be determined directly. For the systems of governing equa-

tions of interest here (Equations (3.9)), the Roe-averaged velocity, v̂x, v̂y, and v̂z,



42 Chapter 3. Finite-Volume Scheme

Roe-averaged turbulence quantities, k̂, ω̂, and Roe-averaged sensible enthalpy, ĥ, and

species mass fractions, ĉN, are all given by the general formula of

Ψ̂ =

√
ρLΨL +

√
ρRΨR√

ρL +
√
ρR

, (3.28)

where ΨL and ΨL represent the left and the right sate vectors consisting of quantities

listed above, and the Roe-averaged density, ρ̂, is evaluated by ρ̂ =
√
ρLρR. The

Roe-averaged mixture temperature, T̂ , as required is then computed iteratively by

solving T̂ = f(ĥ − 1
2
~̂u · ~̂u − k̂). The averaged mixture pressure, p̂, is then obtained

from the gas equation of state p̂ = ρ̂R̂T̂ with the averaged mixture gas constant

R̂ =

N∑

n=1

ĉiRi, where N is the total number of species involved in the calculation and

Ri is the gas constant for individual species. The Roe-averaged specific heats for the

mixture, ĉv and ĉp, are computed as ĉv =
N∑

n=1

ĉiCvi(T̂ ) and ĉp =
N∑

n=1

ĉiCpi(T̂ ). The

Roe-averaged ratio of specific heats is γ̂ = ĉp/ĉv, and finally, the Roe-averaged sound-

speed is â =
(
γ̂ − 1

)(
ĥ − 1

2
~̂u · ~̂u − k̂

)
. This averaged sound-speed is modified to be

ĉ =
√
â+ 2

3
γ̂k̂ to account for the fact that the term, 2

3
ρk, from the normal Reynolds

stresses should be “lumped” together with mixture pressure, since this is a hyperbolic

term and needs to be treated in an upwind manner.

The eigenvalues of the matrix Â can be viewed as the wave speeds of the ap-

proximate Riemann problem and the right eigenvectors represent how the solution

changes across each of the waves. Roe’s scheme, Equation (3.27), requires knowledge

of the eigenvalues and right eigenvectors of the flux Jacobian matrices evaluated at

the Roe-averaged state and formed in terms of primitive variables. The resulting

eigenvalues from the averaged matrix in the x direction are λ̂1 = v̂x − ĉ, λ̂2,3,4 = v̂x,

λ̂5 = v̂x + ĉ, λ̂6,...,N = v̂x. The matrix of the right eigenvectors for the flux Jacobians
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in the x direction is given by




1 1 . . 1 . . . · · · .

v̂x v̂x − ĉ . . v̂x + ĉ . . . · · · .

v̂y v̂y ρ̂ . v̂y . . . · · · .

v̂z v̂z . ρ̂ v̂z . . . · · · .

H− ĉpT̂ H− v̂xĉ ρ̂v̂y ρ̂v̂z H + v̂xĉ ρ̂ 0 ρ̂η1 · · · ρ̂ηN

k̂ k̂ . . k̂ ρ̂ . . · · · .

ω̂ ω̂ . . ω̂ . ρ̂ . · · · .

ĉ1 ĉ1 . . ĉ1 . . ρ̂ · · · .
...

...
...

...
...

...
...

...
. . .

...

ĉN ĉN . . ĉN . . . · · · ρ̂




,

where ηi = ǫ̂i − ĉvRiT̂

R̂
, H is the specific enthalpy given by H = ~̂v·~̂v

2
+ ĥ + k̂, and ǫ̂i is

the specific internal energy for species i. The right-eigenvector matrices in the y and

the z directions have a similar form, and are given in appendix B.

An entropy fix is necessary to account for the fact that the Roe’s approximate

Riemann solver cannot reasonably represent expansion waves associated with acoustic

waves having wavespeeds λ̂1 and λ̂5, in which the the expansion fan has a head and tail

moving in opposite directions (i.e., near sonic points). The averaged eigenvalues, |λ̂k|,
in Roe’s flux function (Equation (3.27)) are replaced by Harten’s entropy fix [139],

thereby increasing the magnitude of these two acoustic waves near sonic points such

that |λ̂∗k| is given by

|λ̂∗k| =





|λ̂k| if |λ̂k| ≥ ∆λk

2
,

k̂2

∆λk
+ ∆λk

4
if |λ̂k| < ∆λk

2
,

(3.29)

where ∆λλk
= max(0, 4(λk(UR) − λk(UL))) , k = 1, 5.

The Harten, Lax, and van Leer’s [132] (HLL) approximate Riemann solver is also

used in this work. This approximate solver is based on a two-wave solution to the
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Riemann problem. The HLL flux function is given by

F(UL,UR, ~n) =





FL if SL ≥ 0 ,

SRFL−SLFR+SLSR(UR−UL)
SR−SL

if SL ≤ 0 ≤ SR ,

FR if SR ≤ 0 ,

(3.30)

where SL and SR are left and right signal velocities. One primary defect of this scheme

is exposed by contact discontinuities, shear waves and material interfaces due to the

missing intermediate waves. Einfeldt [117] proposed the following estimates for SL

and SR

SR = max(λmax
R , λ̂max(UL,UR)) ,

SL = max(λmin
L , λ̂min(UL,UR)) , (3.31)

where λ̂ represents Roe’s averaged eigenvalue. This modification produces an effective

and robust scheme, which is referred to herein as the HLLE approximate Riemann

solver.

Frame Rotation

The hyperbolic numerical flux at each cell face is evaluated by solving a Riemann

problem in a rotated frame, whose x-axis is aligned with the normal to the cell

face. A rotation matrix, Γ, can be used to describe the transformation from the

unrotated frame, ~X, to a rotated frame, ~x, that is ~X = Γ~x. In two dimensions, the

transformation is straightforward, the rotated ~x coincides with the face norm ~n, and

the rotation matrix has the form of:

Γ =

[
cos θ sin θ

− sin θ cos θ

]
,

where θ is the angle between the rotated ~x coordinate and the unrotated ~X coordinate.

For the three-dimensional case, the frame rotation is expressed here using Euler

angles. The orientation of the body-fixed coordinate system with respect to the space-

fixed coordinate system is described by three angles, referred to as Euler angles, as
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Figure 3.1: Schematic showing three-dimensional frame rotation in terms of the Euler
angles.

defined in Figure 3.1. Angle φ is the rotation angle about the Z-axis, ~Z, θ is about

an axis oriented in the direction ~N , and ψ is about the z-axis, ~z. The transformation

matrix can be written as the matrix product Γ = χZχθχψ, where the matrices χZ,

χθ, and χψ are given by

χZ =




cosφ sinφ 0

− sin φ cosφ 0

0 0 1


 χθ=




1 0 0

0 cos θ sin θ

0 − sin θ cos θ


 χψ=




cosψ sinψ 0

− sinψ cosψ 0

0 0 1


 .

Let F∗ be the flux in the rotated frame, then flux is given by F = Γ−1F∗ where the
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inverse transformation matrix, Γ−1, has the form




1 0 0 0 0 · 0

0 cosψ cosφ− cos θ sinφ sinψ cos θ sinφ cosψ + sinψ cosφ sin θ sinφ 0 0 0

0 cosψ sinφ+ cos θ cosφ sinψ cos θ cosφ cosψ − sinψ sinφ − sin θ cosφ 0 0 0

0 sin θ sinψ sin θ cosψ cos θ 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 0 0 1




.

For the frame rotations, it can be assumed that, φ = 0, due to the fact that the

rotation is not unique and one need only align the rotated x-axis with the face normal

direction. The other two angles are determined using the face normal components,

~n = nxi+ nyj + nzk, and are given by

cosψ = nx sinψ =
√
n2

y + n2
z cos θ =

ny√
n2

y + n2
z

sin θ =
nz√
n2

y + n2
z

. (3.32)

An alternative method can also be utilized to carry out the frame rotation. This

second approach does not require the evaluation of the Euler angles due to the fact

that the rotated flux results from the rotated velocity vector, since all the scalar

quantities are not affected by the rotated frame. Suppose Ws represents the primitive

scalar solution variables (these values are the same for both rotated and unrotated

frames), such as density, pressure, mass fractions and so on; then ~F∗ = F(~u∗, ~Ws).

Let ~uL represent the velocity vector for left state and ~uR for the right state in the

unrotated frame, while letting ~u∗L and ~u∗R represent the velocity vectors for the left

and the right states, respectively, in the rotated frame which are related as

~u∗L =




~uL · ~n
|~uL − ~n|

0


 , ~u∗R =




~uR · ~n
(~uR − ~n) · (~uL − ~n)

|(~uR − ~n) ⊗ (~uL − ~n)|


 ,
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~x =




x

y

z


 =




~n
~uL−~n∣∣∣∣~uL−~n

∣∣∣∣
(~uR−~n)⊗(~uL−~n)∣∣∣∣(~uR−~n)⊗(~uL−~n)

∣∣∣∣




.

In the case of zero velocity (or zero velocity decomposition) occurring in the left state,

then the right state is taken as the reference. The numerical flux is then given by

~F = Γ−1 ~F∗ with Γ−1 expressed as

Γ−1 =




1 0 0 0 0 · · · 0

0 ~nx
(~uL−~n)x∣∣∣∣~uL−~n

∣∣∣∣

(~uR−~n)⊗(~uL−~n)x∣∣∣∣(~uR−~n)⊗(~uL−~n)

∣∣∣∣
0 · · · 0

0 ~ny
(~uL−~n)y∣∣∣∣~uL−~n

∣∣∣∣

(~uR−~n)⊗(~uL−~n)y∣∣∣∣(~uR−~n)⊗(~uL−~n)

∣∣∣∣
0 · · · 0

0 ~nz
(~uL−~n)z∣∣∣∣~uL−~n

∣∣∣∣

(~uR−~n)⊗(~uL−~n)z∣∣∣∣(~uR−~n)⊗(~uL−~n)

∣∣∣∣
0 · · · 0

0 0 0 0 1 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · 1




,

where the subscripts, x, y, and z, represent the x, y, and z component of a vector,

respectively. Both approaches produce the identical numerical solutions, although the

latter is probably computationally faster than the former one. The rotation based on

the velocities does however have a dependence on the local velocities that may lead

to issues with convergence. For this reason, the approach based on the Euler angles

was used exclusively in all of this thesis research.

3.1.4 Viscous (Elliptic) Flux Evaluation

Evaluation of the viscous component of the numerical flux in Equation (3.5) de-

pends on both the solution state and its gradients at the cell interfaces and has the
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form

~F · ~n=~F(Wi+ 1
2
,j,k,

~∇Wi+ 1
2
,j,k) , (3.33)

where Wi+ 1
2
,j,k is the primitive solution vector at the cell interface which is evaluated

by averaging the left and the right reconstructed solution states,

Wi+ 1
2
,j,k =

(WL + WR)

2
. (3.34)

The evaluation of the gradients for the primitive variables at the cell interface,

~∇W(i+ 1
2
,j,k), requires some additional work and is described next.

The required gradients can be evaluated at each cell-face by applying the diver-

gence theorem to a polygon, formed by joining the centroids of cells, vertices of cells,

or both, in a path surrounding the face. Figures 3.2 illustrates a choice of three

different paths in two dimensions: (a) centroidal path; (b) existing faces co-volume;

and (c) diamond path on Cartesian grid. The diamond path on a curvilinear grid

is shown in Figure 3.2(d). Coirier [39] performed an assessment of a Green-Gauss

reconstruction procedure based on these three paths using a generic Laplacian oper-

ator (the Laplacian is representative of the viscous stress terms of the incompressible

Navier-Stokes equations with a constant viscosity). Each reconstruction path was

evaluated on three Cartesian grids: a uniform grid, a uni-directionally stretched grid,

and a one-sided refined grid. Coirier found that centroidal path produces decoupling

that may lead to a checker-board type of numerical instability. The existing faces

co-volume reconstruction path completely decouples all the nearest-layer neighbours

on the uniform grid and causes directional decoupling on both the uni-directionally

stretched grid and the one-sided refined grid resulting in severe inconsistencies in the

scheme. The diamond path with the linearity preserving weighting function proposed

by Holmes and Connell forms a proper reconstruction procedure although an incon-

sistent and non-positive scheme can still be produced for the one-sided refined grid.

The present work adopts the procedure of Green-Gauss integration over the diamond

path using the linearity-preserving weighting function derived by Holmes and Connell

to evaluate the gradients on each cell interface in two space dimensions as

~∇Wi+ 1
2
,j =

~n

~n · ~es

(
Wi+1,j − Wi,j

ds
+

Wi+ 1
2
,j+ 1

2
− Wi+ 1

2
,j− 1

2

dl
~et · ~es

)
. (3.35)
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e

(d)

eee

(a) (b) (c)

Figure 3.2: Possible reconstruction paths showing: (a) centroidal path; (b) existing
faces co-volume; and (c) diamond path on Cartesian grid.

In Equation (3.35), ds is the distance between two centroids, dl is the face length,

and unit vectors, ~et, ~n, and ~es are the tangential vector, face norm, and the distance

vector from the cell centroid to its neighbour’s as shown in Figure 3.3.

For three space dimensions, the edges of the diamond path are replaced by surfaces.

However, extending Equation (3.35) to three dimensions is not straightforward due to

the fact that the face tangential vectors are not uniquely defined for most hexahedral

mesh. In this research work, the cell-face gradients are evaluated using the formula

proposed by Mathur and Murthy [119]

~∇W

∣∣∣∣
i+ 1

2
,j,k

=
Wi+1,j,k − Wi,j,k

ds

~n

~n · ~es
+

(
~∇W − ~∇W · ~es

~n

~n · ~es

)
, (3.36)

where ~∇W is the weighted average of the cell centred gradient at the cell interface

given by

~∇W

∣∣∣∣
i+ 1

2
,j,k

= α~∇Wi,j,k + (1 − α)~∇Wi+1,j,k . (3.37)

The weighting factor, α, is based on cell volume ratios and given by

α = Vi,j,k/(Vi,j,k + Vi+1,j,k) . (3.38)
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ds

(i, j)

(i+1, j)

(i+1/2, j+1/2)

(i+1/2, j−1/2)

et

n

es

Figure 3.3: Face gradient reconstruction
illustration in two space dimensions.

n

es

ds

(i, j, k)

(i+1, j, k)

Figure 3.4: Face gradient reconstruction
illustration in three space dimensions.

3.2 Time Marching Scheme

The coupled system of nonlinear ODEs given by Equation (3.5) resulting from the

finite-volume spatial discretization can be integrated forward in time using a time-

marching method, thereby obtaining a time-accurate solution for unsteady problems.

For steady flow problems, a time-marching method can also be considered to remove

the transient portion of the solution as quickly as possible until the solution is suffi-

ciently close to the steady state. Time accuracy is not required in this case. A wide

variety of time-marching methods, such as explicit methods (Euler, Adams-Moulton,

and Runge-Kutta methods, etc.) and implicit methods (Euler, Trapezoidal, Runge-

Kutta methods, etc.) can be used for these different purposes. The reader is referred

to the textbooks by Lomax, Pulliam and Zingg [113] and by Hirsch [114,115] for more

information on time marching schemes.

For the time-invariant calculations performed as part of this study, a multi-

stage time-marching scheme is used to solve the coupled set of non-linear ODEs

(Equation(3.5)) that arise from the finite-volume spatial discretization procedure.

The time-marching scheme is based on the optimally-smoothing multi-stage time

marching scheme developed by van Leer et al. [140]. The general M stage optimally

smoothing time-marching scheme for integrating Equation(3.5) from the time level n
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to time level n+ 1 can be written as

m stage:





U0
i,j,k = Un

i,j,k

Um
i,j,k = U0

i,j,k − αm∆tn Ri,j,k (Um−1) m = 1 · · ·M
Un+1

i,j,k = UM
i,j,k

,

where ∆tn=tn+1 − tn is the size of the time step and αm are multi-stage coefficients.

The coefficients used here have been selected to optimize the high-frequency damping

for first- and second-order upwind discretizations of the scalar advection equation

in multigrid applications [140]. They are not optimized for diffusion problems or

viscous flows. Kleb et al. [141] suggested a set of varying multistage coefficients

for viscous flows and their adaptive application to multigrid relaxation. Having the

coefficients vary with local cell Reynolds number should be beneficial for the turbulent

flows. However, this form of optimized time marching scheme was not considered as

part of this thesis work. Although a multigrid scheme for two-dimensional flows was

considered (to be discussed next), optimizing the solution of the ODEs resulting from

the proposed spatial discretization procedure for steady problems was not a primary

concern and is left for future follow-on research. As noted in the introduction, the

focus of this thesis research was on the development of a highly scalable parallel

finite-volume scheme with AMR.

The source terms associated with finite-rate chemistry and turbulence modeling

are usually responsible for much of the numerical stiffness in the resulting discretized

system of equations. The use of semi-implicit time integration can be utilized to

cope with the stiffness of the system. This method treats source terms implicitly,

while treating the fluxes explicitly. Hence, this method avoids solving the large block

matrices associated with the fully implicit scheme. The semi-implicit form couples

with the multistage scheme by replacing the update-stage of the multistage scheme

as
[
~~I − ναm∆tn

∂S(0)

∂U

]
∆Um

i,j,k = ναm∆tnRi,j,k(U
(m−1)) , (3.39)

where
~~I is the identity matrix, ∆Um = Um − U0 is the solution change, and ∂S(0)

∂U
is

the source Jacobian term. A local linear system of equations is then solved to obtain
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the solution change using a dense matrix solver. In this case a LU decomposition was

used.

The inviscid Courant-Friedrichs-Lewy stability, viscous von Neumann stability,

and turbulent and chemical time step constraints are imposed when selecting the

time step. Note that, for reacting flows, the inverse of the maximum diagonal of the

chemical source term Jacobian is added to the time step calculation. The time step,

∆tn, is then determined by

∆tn = min

(
CFL

∆l

|~u| + c
,
α

2

ρ∆l2

max
(
µ, µt

) ,
(
β max(

∂Sc

∂U
)

)−1
)
, (3.40)

where ∆l is the cell-face length of a cell, c is the sound speed, and µ and µt are

molecular viscosity and turbulent eddy viscosity, respectively, and where α and β are

scaling factors.

3.3 Full Approximation Storage Multigrid

For Steady Flows

Multigrid techniques have proved to be very effective methods for calculating

steady state solutions of both elliptic and hyperbolic partial differential equations [142].

Essentially, the multigrid technique involves using a set of coarser girds to acceler-

ate the convergence of iterative schemes. Standard iterative methods tend to damp

out high-frequency components of the error more efficiently than low-frequency ones.

With an appropriate coarse-grid approximation of the fine grid system of equations,

low-frequency error modes on the fine-grid become high-frequency ones on the coarser

grids. Together with an efficient high-frequency error-damping relaxation method, the

multigrid technique can dramatically reduce computational cost. Details of multigrid

methods may be found in the literature, see for example [143,144].

A full approximation storage (FAS) multigrid has been developed and applied to

the solution of two-dimensional steady state problems as part of this thesis research.

Application to the three-dimensional case was not considered. Here, we intentionally
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keep the discussion of the multigrid technique brief and only introduce the main

elements involved in the multigrid solution procedure employed in this study.

The main elements of a FAS multigrid method can be summarized as follows:

• perform n1 iterations of the selected relaxation method on the fine-grid.

• transfer both the solution and the residual to the to next coarser grid level

(solution restriction and residual restriction).

Ik→kk−1
Uk =

1

Ωk−1

n∑

l=1

Ωk
l U

k
l , (3.41)

Ik→kk−1
Rk =

k∑

l=1

Rk
l , (3.42)

Sk−1 = Ik→kk−1
Sk . (3.43)

where Ik→kk−1
is the transfer operator, k and k-1 represents a fine and coarse-

grid level, respectively, Ω is the cell area in two space dimensions and cell volume

in three space dimensions, and n is 4 in two space dimensions and 8 in three

space dimensions.

• perform some relaxation or smoothing cycles on the coarse level (solution

smoothing), then the solution and residual are restricted to the next coarser

level until the coarsest level is reached, and the problem is solved on the coarsest

grid level.

• Interpolate the solution back to the finer level (solution prolongation): the

solution and residual from this finer level are then interpolated to next finer

level after some relaxation iterations. Solution prolongation is continued until

the finest level is reached.

The above process is repeated until satisfactory convergence is obtained.

Next, some of the difficulties in applying a multigrid convergence technique to

turbulent combustion are discussed and several remedies are proposed herein includ-

ing modifications to the restriction and prolongation operators to improve multigrid

convergence and performance.
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3.3.1 Smoothing Operator

Multigrid Navier-Stokes solvers can result in convergence inefficiency (slower con-

vergence) in cases where highly stretched meshes are used. Application of multigrid to

the RANS equations can also result in convergence rates that are far from optimal due

to the stiff source term associated with the turbulence models. Classic multigrid reme-

dies for these multigrid difficulties, such as directional-coarsening, directional implicit

smoother, combining directional coarsening and smoothing, and combining a point-

implicit block-Jacobi preconditioner and J-coarsening, etc., are well documented and

the effects are illustrated for some example problems by Pierce and Giles [145, 146]

and Mavriplis [142]. Zhang and Liu suggested freezing the nonlinear terms to pre-

serve the turbulence quantities on the coarser levels, and furthermore, limiting the

change of turbulence quantities at every iteration to preserve the positivity of tur-

bulence quantities [147]. Park and Kwow adopted most of the suggestions of Zhang

and Liu, but proposed additionally the use of different CFL numbers according to

grid levels [148]. Gerlinger and Brüggemann investigated the q-ω model and proposed

the techniques of computing the production term and the divergence of velocity field

only on the finest mesh and restricted these values to coarser meshes. For compli-

cated geometries and simple flow field initializations, they initiated the calculation

with several fine mesh iterations before restricting to coarser meshes [149].

To remedy the multigrid difficulties in stability and convergence due to the stiff

turbulence production terms and chemical source terms and the use of highly stretched

meshes, a point-implicit block-Jacobi preconditioner (matrix preconditioner) is em-

ployed herein in combination with the multigrid solver. The turbulence quantities

are restricted to the coarse mesh but not updated so as to enhance the stability of

the scheme and avoid non-physical solutions. Note that we do not believe that the

point-Jacobi preconditioning will provide a fully satisfactory solution to issues with

high-aspect-ratio meshes; however, our experiences show that the preconditioning

combined with modifications to the restriction and prolongation operators partially

alleviates the problem.

The point-implicit block-Jacobi preconditioner is based on the form of the discrete
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residual operator, R, and obtained by extracting the terms corresponding to the

center cell in the stencil. The application of the matrix preconditioner to the multi-

stage time-marching scheme of Equation (3.39) is rewritten as

m stage:





U0
i,j = Un

i,j

Um
i,j = U0

i,j − ναm P−1
i,j Ri,j (Um−1) m = 1 · · ·M

Un+1
i,j = UM

i,j

where ν includes the time step and P−1
i,j is the inverse of the matrix preconditioner

for cell (i,j). The construction of the matrix preconditioner is illustrated here using

the system of governing equations in a two-dimensional axisymmetric system. Given

the residual function for cell (i,j), Ri,j, which can be written as

Ri,j =
dUi,j

dt
= − 1

Ai,j

Nf∑

k=1

~Fk · ~nk ∆lk +
Sai,j

r
+ Sti,j + Sci,j , (3.44)

the matrix preconditioner, Pi,j =
∂R
∂U

∣∣
i,j

, is a N×N matrix and has the form

Pi,j =
∂Ri,j

(
U,∇U

)

∂Ui,j

=




∂R1

∂U1

∂R1

∂U2
. . . ∂R1

∂UN

∂R2

∂U1

∂R2

∂U2
. . . ∂R2

∂UN

...
...

. . .
...

∂RN

∂U1

∂RN

∂U2
. . . ∂RN

∂UN




. (3.45)

Each term Pi,j consists of five components and they result from the inviscid numerical

flux Jacobian, Ci, the viscous flux Jacobian, Cv, and the source Jacobians due to

axisymmetric coordinate system, Ca, the source Jacobian due to turbulence, Ct, and

the source Jacobian due to chemistry, Cc. The evaluation of each of these Jacobian

matrices is discussed below.

The inviscid numerical flux Jacobian at each cell face is evaluated by the solutions

of a Riemann problem in a rotated frame aligned with the normal to the cell face and

takes on the form of

Ci =
∂(~F · ~n)

∂Ui,j

=
∂F

∂F∗
∂F∗

∂U∗
L/R

∂U∗
L/R

∂Ui,j

, (3.46)

where U∗
L/R and F∗ are the solution state and flux in the rotated frame. The term

∂F∗

∂U∗

L/R
is evaluated for both the Roe and HLLE flux functions. This inviscid Jaco-

bian evaluation is approximated by assuming that the eigenvalues and eigenvectors
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(appearing in Roe and HLLE flux functions) are constant and, when using higher or-

der scheme, the gradients of the primitive variables are also assumed to be constant.

Pierce and Giles [146] also suggested that using the matrix precondition based on a

first-order discretization for higher-order schemes is acceptable.

The viscous numerical flux Jacobian is formulated depending on the method used

to evaluate the viscous flux. For two-dimensional flows, the viscous numerical flux

Jacobian is determined using a diamond-path procedure. The general form for the

viscous flux Jacobian is

Cv =
∂ ~Fv · ~n
∂Ui,j

=

∂

(
nr Fv + nz Gv

)

∂Ui,j
. (3.47)

In the source Jacobians, Cs, the three terms are lumped together as

Cs = −∂(
Sai,j

r
)

∂Ui,j
+
∂Sti,j

∂Ui,j
+
∂Sci,j

∂Ui,j
. (3.48)

The detailed derivation of this matrix preconditioner was performed with the aid of

Maple [150].

Some testing was performed to ensure the correct implementation of the precon-

ditioner in the numerical algorithm. The preconditioner was tested using a finite-

difference method with a first order accurate approximation of the residual Jacobian:

∂Ri,j

(
U,∇U

)

∂U

∣∣∣∣∣
i,j

≈

R(Ui,j + ǫ) −R(Ui,j)

ǫ
+ O(ǫ) ,

where ǫ = ηU with η= 10−6 ∼ 10−5. The verification has been performed with varied

solution fields and different mesh stretching factors. The observed maximum relative

error was found to be about

σ =
∣∣∣
∂R
∂Ui,j

− R(Ui,j+ǫ)−R(Ui,j)

ǫ

∂R
∂Ui,j

∣∣∣ ≤ 2.0% . (3.49)

It is felt that this error is acceptable considering the approximations used in the

Jacobian evaluation and the numerical error associated with the numerical scheme.

It provides some level of confidence that the matrix preconditioner in the current

numerical algorithm has been correctly implemented.
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3.3.2 Restriction and Prolongation Operators

The use of multigrid acceleration for reactive flow calculations was not adequately

examined until the early 1990s. Previous efforts related to the application of the

multigrid method for combustion calculations achieved no or only small convergence

acceleration [149,151]. This might be due to the fact that the convergence acceleration

of multigrid techniques is achieved by damping the low frequencies of the error more

efficiently on coarser-grid levels which is in contrast to the local behavior of turbu-

lence and chemical production terms. Slomski and Radespiel simulated reacting flows

with relatively small reaction schemes using standard multigrid procedures [152]. Ed-

wards [153] pointed out that Slomski and Radespiel’s approach was the only multigrid-

based algorithm for computing hypersonic chemically reacting flows up until 1996.

Edwards subsequently employed multigrid techniques for hypersonic chemically re-

acting flows and hydrogen combustion and achieved reasonable speedup [153]. Sheffer

et al. obtained considerable speedups for detonation waves using a two-level multi-

grid method [154]. Gerlinger et al. later employed a four-level multigrid method and

achieved considerable convergence speedups. Bellucci and Bruno employed a four-

level multigrid method for three-dimensional incompressible flow with combustion;

however, they presented convergence rates only for non-reacting cases [155].

Based on some of the ideas from this and other previous work, the following

strategy was employed in this thesis work in order to produce a robust multigrid

algorithm for applications to turbulent combusting flows:

• First, the turbulence quantities are not updated on coarser meshes. The tur-

bulence quantity, ω, is explicitly involved in the combustion modelling, so this

technique also helps to preserve the flame shape and location computed from

the finest mesh without any errors associated with changing grids.

• The meshes used in this research are often highly stretched in order to re-

solve laminar sublayers, shear layers, and thin flame fronts. This results in

some computational cells with very large cell aspect ratios, leading to addi-

tional difficulties for solution by the multigrid method. In particular, it was
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found that the multigrid convergence was significantly affected by the pro-

longation operator. A standard bi-linear interpolation was used initially to

transfer corrections from coarse to fine mesh; however, the performance of the

multigrid scheme suffered. Convergence was hampered and, in some cases,

the procedure failed to converge. In this work, efforts have been made to de-

vise more effective prolongation operators for meshes with large cell aspect

ratios. Figure 3.5 illustrates a stretched grid. Several prolongation operators

are investigated: simple injection, Ui,j fine = Ui,j coarse; area weighted injection,

Ui,j fine = (Ai,j coarse/
∑
Ai,j fine) Ui,j coarse; a standard bi-linear interpolation;

and finally, a standard bi-linear interpolation plus a linear interpolation, mean-

ing that interpolating the value for the coarse node (i, j) using standard bi-linear

first and then interpolating for the fine cell (i, j) with values from both coarse

node (i, j) and coarse cell (i, j) with a linear interpolation. The effectiveness of

using these different prolongation operators will be demonstrated for a laminar

non-reacting flow problem using stretched computational grids in Chapter 5.

Note that the multigrid algorithm is applied directly to each of the solution blocks

without regard to the level of refinement for the grid blocks associated with each

solution block, i.e., the grids are not necessarily on the same refinement level due

to the AMR procedure. This block-based approach to the multigrid algorithm can

adversely affect its performance. This performance degradation may be remedied

by utilizing additional multigrid levels spanning across blocks to bring all solution

content to the same level of refinement, but this is not considered here.

3.3.3 Acceleration Efficiency

The “explicit” nature of the proposed point-implicit smoother allows the multigrid

algorithm to be implemented in a fairly straightforward manner on a parallel com-

putational platform. The use of the preconditioned multigrid acceleration technique

enables efficient solutions of the turbulent reactive flow calculations. The study of the

preconditioned-multigrid convergence acceleration with the proposed enhancement

strategies was carried out for several two-dimensional flow problems: fully-developed
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Figure 3.5: Illustration of different prolongation operators on a stretched body-fitted
quadrilateral mesh.

turbulent pipe flow and turbulent non-reacting and reacting flows about a bluff-body

burner. The numerical results and the computational performance for these flow

problems are described in Chapters 5 and 6.





Chapter 4

Parallel Adaptive Mesh

Refinement of Multi-Block

Body-Fitted Meshes

Adaptive mesh refinement algorithms adapt the mesh automatically to the solu-

tion of the governing equations and can be very effective in treating problems with

disparate length scales. This chapter outlines the main features of the proposed par-

allel AMR algorithm and its parallel implementation. Section 4.2 provides details

of the proposed grid refinement procedure and discusses the design of appropriate

refinement criteria. A flexible block-based hierarchical tree data structure has been

developed and is used to maintain the connectivity of the solution blocks in the multi-

block mesh and this is described in Section 4.3. The computation of solution block

connectivity is outlined in detail, including the treatment for unstructured block con-

nectivity of the root blocks. This chapter concludes with a discussion of the parallel

implementation, including load balancing and Morton ordering procedures.

4.1 Overview of Parallel AMR Scheme

Adaptive mesh refinement algorithms permit local mesh refinement and thereby

minimize the number of computational cells required for a particular calculation. As

61
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mentioned in the first chapter, a block-based AMR approach is employed herein.

The proposed AMR formulation borrows from previous work by Berger and co-

workers [13,14,16,18–20,24] for Cartesian meshes and has similarities with the block-

based approaches described by Quirk [19] and Berger [20]. Other researchers have

considered the extension of Cartesian mesh adaptation procedures to more arbitrary

quadrilateral and hexagonal meshes [156, 157]. In this thesis work, the multi-block

body-fitted AMR scheme allows for the use of anisotropic meshes for resolving thin

shear and boundary layers. The proposed refinement procedure preserves the original

stretching of the mesh. Following the approach developed by Groth [30, 31] for com-

putational magnetohydrodynamics, a flexible block-based hierarchical data structure

has been developed. This data structure facilitates automatic solution-directed mesh

adaptation on multi-block meshes according to physics-based refinement criteria.

The implementation of the AMR procedure in the proposed algorithm involves

the following steps:

1. evaluation of the refinement measures for each solution block and marking of

solution blocks for refinement and coarsening;

2. assessment of the refinement levels for all solution blocks to ensure that the

refinement ratio between adjacent blocks is no greater than 1:2;

3. removal of solution blocks associated with coarsening of grid;

4. addition of “leaves” representing new children solution blocks in the tree data

structure;

5. update of block connectivity and block information used in sharing solution

data between blocks;

6. carry out actual coarsening and refinement of blocks marked for a resolution

change with a redistribution of the children solution blocks among the processors

to ensure load balancing.

The remainder of this chapter is devoted to discussions of various aspects of the

parallel AMR scheme.
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4.2 Refinement and Coarsening of Solution Blocks

The finite-volume scheme described in the previous chapter (Chapter 3) is applied

to multi-block body-fitted mesh in which the grid is composed of a number of struc-

tured blocks. Each of these structured blocks of the computational mesh consists of

Ni×Nj quadrilateral cells in two space dimensions and Ni×Nj×Nk hexahedral cells

in the three-dimensional case, where Ni, Nj and Nk are even integers greater than

or equal to four. The values of Ni, Nj and Nk are not necessarily the same for each

block; however, the use of unstructured root block connectivity (described later in

this chapter) imposes some constraints on the relationships between Ni, Nj and Nk

for each of the grid blocks. Furthermore, having the same number of computational

cells in each grid block greatly facilitates the parallel implementation of the algorithm

as shall be seen.

Mesh adaptation is accomplished by dividing and coarsening of appropriate grid

blocks. In regions requiring increased cell resolution, a “parent” block is refined by

dividing itself into four or eight “children” or “offspring” depending on the dimen-

sionality. Each of the four or eight children of a parent block becomes a new block

having the same number of cells as the parent and thereby doubling the cell resolution

in the region of interest. This refinement process can be reversed in regions that are

deemed over-resolved and four or eight children are coarsened or merged into a single

parent block. Figure 4.1 illustrates two neighbouring 8×8×8 hexahedral blocks of a

three-dimensional mesh, one of which has undergone one level of refinement and one

of which has not. The resulting refined grid consists of nine blocks. The refined grid

can be coarsened or de-refined by reversing the division process and merging eight

blocks into one.

The grid adaption is constrained such that the grid resolution changes by only a

factor of two between adjacent blocks and the minimum resolution is not less than

that of the initial mesh. Once the grid is refined, standard multigrid-type restriction

and prolongation operators are used to evaluate the solution on all blocks created by

the coarsening and division processes, respectively.
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Figure 4.1: An example of two neighbouring 8 × 8 × 8 hexahedral solution blocks:
one which has undergone refinement and one which has not.

4.2.1 Refined Grid Generation

A key operation in the proposed block-based AMR procedure is the generation of

the mesh points in the refined grid blocks from the initial mesh. This section describes

the technique used to refine a given block in the mesh using the grid metrics. The

resulting procedure is very effective in preserving the original mesh point clustering

in the body-fitted mesh and maintaining the smoothness and locations of the grid

lines in the mesh.

In the proposed grid refinement procedure, it is assumed that the nodal locations in

the physical domain, ~x = (x, y, z), can be mapped onto a uniformly spaced Cartesian

computational domain, (ξ, η, ζ). The physical location of the additional nodes in

the refined grid can then be computed using Taylor approximation theory and the

grid metrics. Specifically, the refined nodes along the edges, on the faces, and along

the center of the volume are calculated using a Taylor series expansion truncated to
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second-order for the node locations in physical space in terms of the coordinates, ξ,

η, ζ , of the computational space given by

~x(ξ + ∆ξ, η + ∆η, ζ + ∆ζ) = ~x(ξ, η, ζ) +
∂~x

∂ξ

∣∣∣∣∣
ξ,η,ζ

∆ξ +
∂~x

∂η

∣∣∣∣∣
ξ,η,ζ

∆η +
∂~x

∂ζ

∣∣∣∣∣
ξ,η,ζ

∆ζ

+
1

2

(
∂2~x

∂ξ2

∣∣∣∣∣
ξ,η,ζ

(∆ξ)2 + 2
∂2~x

∂ξ∂η

∣∣∣∣∣
ξ,η,ζ

∆ξ∆η +
∂2~x

∂η2

∣∣∣∣∣
ξ,η,ζ

(∆η)2

+2
∂2~x

∂ξ∂ζ

∣∣∣∣∣
ξ,η,ζ

∆ξ∆ζ +
∂2~x

∂ζ2

∣∣∣∣∣
ξ,η,ζ

(∆ζ)2 + 2
∂2~x

∂η∂ζ

∣∣∣∣∣
ξ,η,ζ

∆η∆ζ

)

+O
(

(∆ξ)3, (∆η)3, (∆ζ)3

)
. (4.1)

Approximate expressions for the various derivatives appearing in Equation (4.1) are

required. The first derivatives

∂~x

∂ξ
,

∂~x

∂η
,

∂~x

∂ζ
,

are estimated using second-order-accurate forward/backward finite-difference formu-

lae for boundary nodes and second-order-accurate centre difference for interior coarse

nodes. As shown in Figure 4.2, the first derivatives are computed at the coarse nodes

of the original mesh which are represented by solid-filled circles. The second-order

derivatives,

∂2~x

∂ξ2
,

∂2~x

∂η2
,

∂2~x

∂ζ2
,

are computed for each midpoint on the edge (labelled with non-filled circles) based on

finite differences of the first derivatives. These expressions are used to approximate
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the second derivatives for any vertex on the edge as follows:

∂2~x

∂ξ2

∣∣∣∣∣
ξ,η,ζ

=
∂2~x

∂ξ2

∣∣∣∣∣
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2
,η,ζ

,
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ξ,η,ζ

=
∂2~x

∂η2

∣∣∣∣∣
ξ,η+∆η,ζ

≈ ∂2~x

∂η2

∣∣∣∣∣
ξ,η+∆η

2
,ζ

,

∂2~x

∂ζ2

∣∣∣∣∣
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=
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∂ζ2

∣∣∣∣∣
ξ,η,ζ+∆ζ

≈ ∂2~x

∂ζ2

∣∣∣∣∣
ξ,η,ζ+∆ζ

2

.

(4.2)

Mixed derivatives,

∂2~x

∂ξ∂η
,

∂2~x

∂ξ∂ζ
,

∂2~x

∂η∂ζ
,

are computed at the face centroid (labelled with shaded square in Figure 4.2) from

coarse-grid vertex information (labelled with solid-filled circles). These values would

be used to approximate the mixed derivatives at the coarse nodes on the face. The

mixed derivatives for the four coarse nodes on a face as shown in Figure 4.3 are

approximated by

∂2~x

∂ξ∂ζ

∣∣∣∣∣
ξ,η,ζ

=
∂2~x

∂ξ∂ζ

∣∣∣∣∣
ξ+∆ξ,η,ζ

=
∂2~x

∂ξ∂ζ

∣∣∣∣∣
ξ,η,ζ+∆ζ

=
∂2~x

∂ξ∂ζ

∣∣∣∣∣
ξ+∆ξ,η,ζ+∆ζ

≈ ∂2~x

∂ξ∂ζ

∣∣∣∣∣
ξ+∆ξ

2
,η,ζ+∆ζ

2

.

(4.3)

However, an averaging procedure used to estimate the refined nodes on each face and

at volume centroid described below results in the cancellation of the mixed derivatives

and, in practice, the mixed derivatives are not required nor computed. The averag-

ing procedure and the cancellation of the mixed derivatives due to this averaging

procedure are demonstrated next.

A second-order averaging procedure is used to combine the Taylor series expan-

sions, Equation (4.1), at each of the four nodes of a given coarse face when evaluating

the new mesh points of the fine grid. For a midpoint along the edge, (for example,

see Figure 4.3), its physical location, ~x(ξ + ∆ξ
2
, η, ζ), is determined by averaging the
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Figure 4.2: Illustration of refining a grid with grid metrics.

two approximated locations obtained using Taylor expansion (Equation (4.1)) from

its left and right coarse nodes, ~x(ξ, η, ζ), and ~x(ξ + ∆ξ, η, ζ), respectively. For the

centroid of a face, values from four coarse nodes are averaged, and similarly, for the

center of the volume, values from eight coarse nodes are averaged. Note again that

the mixed second derivatives cancel out during the averaging process for faces and

volumes, obviating the need to compute them. The cancellation of the mixed deriva-

tives can be illustrated with the aid of Figure 4.3. The physical location of the node

on the center of a face, ~x(ξ + ∆ξ
2
, η, ζ + ∆ζ

2
), can be approximated by using Taylor
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Figure 4.3: Illustration of the four coarse nodes on a face.

expansion from the node of ξ, η, ζ , and is given by

~x(ξ +
∆ξ

2
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2
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)
. (4.4)

The physical location of the node of interest here can also be approximated by using

Taylor expansions from the other nodes (ξ+∆ξ, η, ζ), (ξ, η, ζ+∆ζ), and ~x(ξ+∆ξ, η, ζ+

∆ζ):

~x(ξ +
∆ξ

2
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2
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, (4.5)



Section 4.2. Refinement and Coarsening of Solution Blocks 69

~x(ξ +
∆ξ

2
, η, ζ +

∆ζ

2
) = ~x(ξ, η, ζ + ∆ζ) +

∂~x

∂ξ

∣∣∣∣∣
ξ,η,ζ+∆ζ

∆ξ

2
+
∂~x

∂ζ

∣∣∣∣∣
ξ,η,ζ+∆ζ

−∆ζ

2
+

1

2

(
∂2~x

∂ξ2

∣∣∣∣∣
ξ,η,ζ+∆ζ

(∆ξ)2

4
+

∂2~x

∂ξ∂ζ

∣∣∣∣∣
ξ,η,ζ+∆ζ

−∆ξ∆ζ

2
+
∂2~x

∂ζ2

∣∣∣∣∣
ξ,η,ζ+∆ζ

(−∆ζ)2

4

)

+O
(

(∆ξ)3, (∆η)3, (∆ζ)3

)
, (4.6)
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The physical location of the node on the center of a face, ~x(ξ+∆ξ
2
, η, ζ+∆ζ

2
), is then de-

termined by averaging the four approximations above. Clearly, using Equation (4.3),

the terms, involving the mixed derivatives all cancel out.

The performance of the proposed mesh refinement scheme based on the grid met-

rics can be assessed by comparing refined meshes generated by the second-order av-

eraging procedure and grid refinement based on straightforward linear interpolation.

Linear interpolation is performed by averaging the adjacent coarse-grid vertex coordi-

nates. Figure 4.4 depicts a refined grid obtained via the linear interpolation procedure

from a coarse curvilinear grid block. It is evident that the curvature of the grid lines

and mesh point clustering are not smoothly preserved. Figure 4.5 shows a similarly

refined grid generated using the second-order averaging approach described above. In

this case, it is clear that the refined grid preserves the topology of the original mesh.

Further evidence of the capabilities of the refined mesh generation technique pro-

posed here based on the grid metrics is provided by considering the refinement of the

multi-block grid for a pipe or duct with a circular cross section as shown in Figures 4.6

and 4.7. In the figures, it can be seen that the refined mesh not only preserves the

original stretching, but quite accurately reproduce the curved arc of the boundary.
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Refined-grid

Coarse grid

Figure 4.4: A refined grid using linear interpolation approach.

Provided that the boundary can be represented by a continuous surface, this approach

helps to avoid the need for projecting the locations of the refined-mesh boundary

nodes exactly onto the physical geometry and preserves the smoothness of the inte-

rior grid lines. For the somewhat simple flow geometries considered herein, algebraic

relations are used to ensure boundary nodes conform to the physical boundaries.

In the more general case, special treatment must be developed for dealing with the

physical boundary geometry (i.e., projecting the refined-mesh boundary grid points

exactly onto the physical geometry), particularly when encountering some highly (or

pathologically) curved physical boundaries with meshes having high aspect ratios.

Each physical block can be refined in isolation. By using one-sided differences

near the boundary, the proposed refinement procedure based on the metrics does not

require ghost node information from adjacent grid blocks during the refining process.

The ghost nodes (details of the ghost-cell structure are given in section 4.4.1) are
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Refined-grid

Coarse grid

Figure 4.5: A refined grid using second-order averaging approach.

grouped into sections corresponding to the physical blocks to which they belong.

Each of these sections is refined in isolation exactly as the rest of the physical block

(to which they belong) would be. As Figure 4.8 illustrates, since two layers of refined

ghost cells collapse into one layer of coarse ghost cells, there is sufficient information

to compute the metrics exactly as would be done for the complete physical block.

Hence, there is no need for an exchange of grid geometry information between blocks

at the boundary during refinement.

4.2.2 Coarse Grid Generation

Coarsening of the computational mesh can be accomplished in a straightforward

manner by simply reversing the refinement procedure. This is accomplished by the

elimination of mesh points, and thereby reverting the fine mesh to its original unre-
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Figure 4.6: A refined segment of a pipe
grid geometry using second-order averag-
ing approach.

Figure 4.7: A close-up view of the refined
grid showing that the refined grid main-
tains the original stretching.
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Coarse physical node
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Figure 4.8: Illustration of generation of two layers of fine ghost nodes using the grid
metrics from two layers of coarse nodes.

fined mesh. The coarsened mesh will retain only every second node of the fine mesh.

Accordingly, four solution blocks are merged into one solution block for two space
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dimensions and eight solution blocks are merged into one solution block for three

space dimensions.

4.2.3 Refinement Criteria

Solution-directed mesh-refinement requires criteria for deciding where to refine or

coarsen the mesh. A key issue is to reliably determine whether a solution is acceptable

and ensure that the error concerning physical quantities of interest has been brought

below a prescribed tolerance. If this is not the case, refinement criteria can be used

to generate a new computational mesh on which a more accurate numerical solution

can be obtained. In this study, a heuristic set of refinement criteria based on our

physical understanding of the flow properties of interest is used (so-called physics-

based refinement criteria). For the non-reacting flows considered here, the following

measures are used

ǫ1 ∝ |~∇ρ| ǫ2 ∝ |~∇ · ~u| ǫ3 ∝ |~∇⊗ ~u| , (4.8)

in the decision to refine or coarsen a solution block. These three quantities correspond

to local measures of the density gradient, compressibility, and vorticity of the mean

flow field and enable the detection of contact surfaces, shocks, and shear layers. For

combusting flows, additional measures were identified for directing the mesh adaption.

The following four additional measures, ǫ4, ǫ5, ǫ6, and ǫ7 are used and given by

ǫ4 ∝ |~∇k| ǫ5 ∝ |~∇ω| ǫ6 ∝ |~∇T | ǫ7 ∝ |~∇cn| . (4.9)

The first two measures correspond to gradients of the specific turbulent kinetic energy

and dissipation rate per unit turbulent kinetic energy, respectively, and relate to the

structure of the turbulent field. The last two quantities measure the gradients of

mean temperature and mean concentration for species n, respectively, and provide

reliable detection of flame fronts and combustion zones for reactive flows. In addition,

for the resolution of turbulent wall boundary layers, the quantity, y+, a dimensionless

distance from the wall surface, can also be used as a measure to direct the refinement.

A smaller y+ indicates that the location is closer to the wall surface. Given a threshold
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for y+ based on the flow property and geometry characteristics, together with other

refinement measures above, one can expect the AMR procedure to refine the mesh so

as to resolve wall boundary layers.

Using these measures, the decision for refinement of a given solution block is

determined according to the following procedure:

• calculate the refinement measures (for example, ǫ1 is normalized by 3
√
V /ρ and

ǫ2 and ǫ3 are normalized by 3
√
V /a where a is the sound speed) for each cell

and assign the maximum value for all cells as the refinement measures for the

solution block;

• determine the global minimal and maximal values of the refinement criteria for

all solution blocks.

• mark solution blocks to be refined/coarsened after comparing their refinement

measures to the refinement/coarsening thresholds scaled by the global extrema,

i.e., blocks with refinement measures below some specified minimum measure

are coarsened and blocks with measures above some upper bound are refined.

For example, let the ǫ3min and ǫ3max be the global minimal and maximal values of

the refinement measure of curl of the velocity field. Then a threshold for refinement,

ǫ3t , is defined as

ǫ3t = ǫ3min + αt(ǫ3max − ǫ3min) , (4.10)

where αt is an adjustable value between 0.5 ∼ 0.75. Blocks with values of the

refinement measure, ǫ3, greater than the threshold for refinement, ǫ3t, will be refined.

The decision for coarsening a block is made in a similar manner. The threshold for

coarsening, αt, usually is selected to be 0.1 ∼ 0.2. For those blocks with refinement

measures, ǫ3, smaller than the threshold for coarsening, ǫ3t, a coarsening procedure is

performed. Figure 4.9 illustrates the adaptation of a three-dimensional multi-block

hexahedral mesh using the above refinement criteria.

It is recognized that the current set of refinement measures is by no means op-

timal, but experience has shown that it generally works well for the flow problems

considered in this study. One deficiency of the proposed set of refinement measures
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Figure 4.9: Illustration of AMR for a three-dimensional multi-block hexahedral mesh.

is that it does not provide a reliable criterion for terminating the refinement pro-

cess. An alternative strategy for adaptive mesh refinement relies on equidistribution

of solution error based on local estimates of the gradient and curvature of the solu-

tion [158,159]. Although not implemented herein, this methodology has been applied

to steady [62–66] and unsteady [26,67] combustion simulations. Note however, in most
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applications involving nonlinear partial differential equations, selecting the error in-

dicators is not straightforward and sometimes, the error indicators lack theoretical

justifications [160]. Chen [159] reviewed a number of strategies on mesh adaptation

from a mathematical point of view and compared their performances in solving non-

linear diffusion models. Venditti and Darmofal [161–163] proposed an adjoint error

estimation approach and a more conservative criterion for adaption based on residual

errors that lead to improvements in the quality of the error estimates. Please consult

this previous research for further details.

4.3 Solution Block Connectivity

4.3.1 Hierarchical Tree Data Structure

A flexible block-based hierarchical tree-like data structure is used herein to main-

tain the connectivity of the solution blocks in the multi-block mesh. In particular,

quadtree and octree data structures are used for tracking the connectivity of blocks

in the two- and the three-dimensional cases, respectively. For the two-dimensional

case, Figure 4.10(a) shows multi-block quadrilateral AMR mesh solution blocks at

various levels of refinement. Figure 4.10(b) illustrates the corresponding quadtree

data structure used to keep track of mesh refinement and the connectivity between

solution blocks. Figure 4.11 depicts a three-dimensional multi-block hexahedral AMR

mesh consisting of solution blocks at various levels of refinement and the correspond-

ing octree data structure. For the three-dimensional case, a block-based hierarchical

octree data structure, as illustrated in Figure 4.11, has been developed and is used

to keep track of mesh refinement and block connectivity.

The quadtree/octree data structure developed here naturally keeps track of the

refinement level and connectivity between grid blocks during isotropic refinement

processes. Although it is not strictly anisotropic, the refinement approach here pre-

serves original stretching of the mesh and allows for anisotropic mesh and improved

treatment of thin boundary and shear layers. Note that strictly anisotropic mesh

adaption strategy has been considered by other researchers [39,164,165] and a hierar-
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Figure 4.10: Multi-block quadrilateral AMR mesh showing solution blocks at various
levels of refinement and the corresponding quadtree data structure.

chical binary-tree data structure [39] and/or an indexing scheme for Cartesian mesh

can be used to keep track of the grid connectivity [164, 165].

4.3.2 Computation of Solution Block Connectivity

Neighbour information of each block is required in order to exchange solution

and/or geometry information during the solution procedure. Obviously, adaptive

mesh refinement complicates the process for determining neighbouring blocks. The

technique developed herein for searching for nearest neighbours is now described. The

searching algorithm is based on existing knowledge of neighbouring solution blocks

that is stored in the quad/octree data structure. In other words, before any refine-

ment process, it is assumed that each block has all of its neighbour information. This

knowledge is used to understand the relative orientation between two branches of

blocks, with one branch containing a work block of interest and the other contain-

ing the neighbour block of interest, and to define a so-called “bridge” between two
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Figure 4.11: Multi-block hexahedral AMR mesh showing solution blocks at various
levels of refinement and the corresponding octree data structure.

branches (a pointer that provides connection to two different branches of the tree: in

this case, work and neighbour branches).

Consider execution of the AMR process at a given point during the solution pro-

cedure. The neighbour information for many of the solution blocks has been changed

due to the coarsening and refinement process. The neighbouring blocks on the twenty-

six boundary elements (6 faces, 12 edges and 8 vertices) of a given block, labelled the

work block, must be found and the neighbour information, such as block number,

relative refinement level, orientation, etc., need to be stored for future information

exchange (message passing) between grid blocks. The number of neighbour blocks

depends on the resolution change across a boundary element. If there is no resolution

change, an interior corner, edge, and face element can only have one neighbouring

block. If there is a resolution change (the maximum change in resolution is restricted

to 2:1), each of the corner boundary elements can only have one neighbour block; oth-
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Figure 4.12: The refinement flags for the work block (blue) and its previous neighbour
block (dark red) are “flagged for no change” and “flagged for refinement”, respectively,
and the refinement level for the previous neighbour can be either level n-1 or level n.

erwise there are 2 and 4 neighbouring blocks for the edge and face boundary elements,

respectively.

The status of refinement/coarsening flags of both the work block and its neighbour

block are first checked. Nine possible combinations of the relative refinement status

between the work block and its neighbour block are listed in Table 4.1. The discussion

to follow below will illustrate the four cases associated with mesh refinement. Cases

related to mesh coarsening can be treated with similar logic and the details will not

be repeated herein.

For the first case of interest, both the work and neighbour blocks remain un-

changed, the neighbouring block information stored from a previous refinement pro-

cess can be reused, and further computation of neighbouring block information for this

boundary element is not required. Figures 4.12–4.14 depict the refinement process in

the other three cases associated with refinement.
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Figure 4.13: The refinement flags for the work block (blue) and its previous neighbour
block (dark red) are “flagged for refinement” and “flagged for no change”, respectively,
and the refinement level for the previous neighbour can be either level n or level n+1.

Table 4.1: Nine possible combinations of the relative refinement status between the
work block and its neighbour block.

Status work block neighbour block

(1) flagged for no change flagged for no change
(2) flagged for no change flagged for refinement
(3) flagged for refinement flagged for no change
(4) flagged for refinement flagged for refinement
(5) flagged for no change flagged for coarsening
(6) flagged for coarsening flagged for no change
(7) flagged for coarsening flagged for coarsening
(8) flagged for coarsening flagged for refinement
(9) flagged for refinement flagged for coarsening

Figure 4.12 illustrates the second case where the work block (blue) is flagged for

refinement and the neighbour block is flagged for no change. The work block can have

a previous neighbour (dark red) with refinement level of n-1 or n. Note that here n is
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Figure 4.14: The refinement flags for the work block (blue) and its previous neighbour
block (dark red) are “flagged for refinement” and “flagged for refinement”, respec-
tively, and the refinement level for the previous neighbour can have three possibilities:
level n-1, n, and n+1.

defined to be the current refinement level, a refinement level of n-1 implies one level

coarser than level n, and a refinement level of n+1 indicates one level finer than the

level n. If the previous neighbour level is at level n-1, the work block needs to ascend

the tree to its parent to retrieve its own sector information first and then traverse

the tree to the neighbour branch by using the bridge built between the work and

neighbour branches at level n-1. The neighbour branch is then descended to obtain

the appropriate neighbour information (the appropriate neighbour’s sector is in the
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opposite direction of that used to connect to the work block). If the previous level of

the neighbour block is n, then a bridge is defined between this work block and this

previous neighbour block at level n. Neighbour information can then be obtained by

first following the bridge to the neighbour branch and then descending the tree to

determine the neighbour information for newly created block.

Figure 4.13 shows the case where the refinement flags for the work block and

its previous neighbour block are “flagged for refinement” to “flagged for no change”,

respectively. The previous neighbour can be at either level n or level n+1. The

bridge needs to be set between the work and neighbour branch at level n for these

two possibilities since the work block (i.e., the new child block) knows nothing about

its neighbour and must ascend the tree up to its parent and then utilizes its parent’s

connectivity information for determining its neighbour.

Figure 4.14 indicates the most complicated of the first four cases, i.e., both the

work block and its neighbour are marked to be refined. The three possibilities for the

previous level of the neighbour block are the levels n-1, n and n+1, and accordingly,

there are two possibilities for the bridge. If the previous level of the neighbour block

is at level n-1, then the work block needs to ascend the tree to obtain its own sector

information and traverse the tree by using the bridge and then descending the tree to

obtain its new neighbour information. The other possibility for the bridge is between

two branches at the level n, for the previous level of the neighbour block is at either

level n or n+1. Once the bridge is defined, the routine can be utilized by the work

block to retrieve its neighbour’s information. Note that the neighbour information for

all the solution blocks must be updated after the entire neighbour searching procedure

is complete.

4.3.3 Computation of Unstructured Root-Block

Connectivity

The connectivity between unstructured blocks needs to be either specified or com-

puted in order to carry out message passing of solution information between blocks.

Unlike a structured arrangement of blocks, where the block connectivity can be eas-
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Figure 4.15: Illustration of an unstructured connectivity.

ily obtained since the connectivity is stored logically in two- and three-dimensional

arrays, unstructured connectivity and orientation have to be computed. As noted in

the previous section, for each block, there are 26 boundary elements (8 vertices, 12

edges and 6 faces) and connectivity of each element is computed and stored for reuse.

The unstructured root-block connectivity is computed once and this connectivity in-

formation is then stored and propagated down the tree.

The logic employed in this numerical algorithm for representing the unstructured

connectivity follows the methodology proposed in the CFD General Notation System

(CGNS) [166]. To illustrate the unstructured connectivity between blocks, consider

the grid blocks shown in Figure 4.15.

Generally, the following steps are involved in obtaining the block connectivity:

• blocks are matched to one another using block faces defined from coordinate

information at the corners of the hexahedral blocks;

• transformation matrices and offsets describing the relative orientations of two

blocks sharing a matching face are computed;

• neighbour information across each boundary element of a block is then stored,
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including the neighbour index, matching faces, and orientation.

A transformation matrix, T, is used to relate the i, j, k (coordinates of compu-

tational frame) indices used for accessing the solution data contained in arrays of

the two adjacent structured solution blocks. The transformation matrix itself has

full rank and contains elements with possible values of +1, -1 and 0; the matrix is

orthonormal and its inverse is its transpose. The transformation matrix is stored in

a compact form as [a , b , c]. The full matrix, T, is then reconstructed as

T =




sgn(a) del(a-1) sgn(b) del(b-1) sgn(c) del(c-1)

sgn(a) del(a-2) sgn(b) del(b-2) sgn(c) del(c-2)

sgn(a) del(a-3) sgn(b) del(b-3) sgn(c) del(c-3) ,


 .

where

sgn(x) ≡





+1 ifx ≥ 0 ,

−1 ifx < 0, ,
(4.11)

del(x − y) ≡





+1 if|x| = |y| ,

0 otherwise .
(4.12)

For example, suppose the computational coordinates of the centre block in Figure 4.15

is the reference system, then the values of [a, b, c] = [+2,+1,−3] indicate the orienta-

tion of its right neighbour block in this reference system is [j, i,−k]. In other words,

an increase in the indices i and j for this block of interest corresponds to a decrease in

index j and an increase in i for its neighbour block to the right, respectively. Further-

more, an increase in k in this block corresponds to a decrease in k for its neighbour.

Since computation of the connectivity is based on block coordinate information only,

it is not dependent on additional information from the grid generator; however, abut-

ting 1-to-1 block connectivity is required. The connectivity and orientation computed

from the original mesh are then stored after computation and this information can

be reused, even if some of the original grid blocks are later refined.

Unstructured root-block connectivity can present some additional challenges as-

sociated with neighbour information for the edge and corner boundary elements. The

number of neighbour blocks sharing each of these elements can vary and in this work
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is assumed to be up to a maximum of 3, 4 or 5 depending on the structure of the

multi-block mesh. Special consideration is also required for gradient reconstruction

for these cases. The gradient computation procedure described in Section 3.1.3 re-

quires modification to account for those boundary cells that may be missing because

of unstructured block connectivity. To illustrate this matter, a two-dimensional case

is used as an example. In Figure 4.16, the cell in block “I” marked with a filled-circle

is under gradient reconstruction, the cells marked “x” denote the ghost cells that

provide information for reconstruction, and the cell marked with an empty circle is

the corner ghost cell. For the case of the unstructured connectivity, the neighbour

block “N” may be missing along with the corner ghost cell; accordingly, the recon-

struction procedure will not utilize that corner cells. In the proposed approach, a

procedure is implemented to check the unstructured connectivity for each bock, and

ensure that only available ghost cells are involved in the gradient reconstruction for

situations with three abutting blocks. In the case of 5 blocks sharing a corner, as

shown in Figure 4.17, there are more corner ghost cells being involved in the gradient

reconstruction procedure, and similarly, a procedure is used to take this situation into

account.

4.4 Exchange of Solution Information

Between Blocks

4.4.1 Ghost-Cell Structure

Solution information is shared between adjacent blocks having common inter-

faces by employing two additional layers of overlapping “ghost” cells. Figures 4.18(a)

and 4.18(b) show the ghost cells used for two- and three-dimensional solution blocks,

respectively. The ghost cells provide solution information from neighbouring blocks

and are used to facilitate communications between solution blocks. When the ghost

cells are updated, buffers are used to facilitate the exchange of messages between

blocks. Naturally, unstructured connectivity complicates this exchange of informa-
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Figure 4.16: Illustration of corner ghost cells for: (a) regular structured connectivity
(4 bocks abutting one another); (b) unstructured connectivity (3 blocks abutting one
another).

tion. Our strategy is to load a one-dimensional buffer with the sending block’s infor-

mation, but with that information re-ordered according to the neighbouring block’s

orientation. The unloading of the buffer is therefore straightforward.

4.4.2 Conservative Flux Corrections

Additional inter-block communication is also required at interfaces with resolu-

tion changes to strictly enforce the flux conservation properties of the finite-volume

scheme [13, 14]. In particular, the interface fluxes computed on more refined blocks

are used to correct the interface fluxes computed on coarser neighbouring blocks

and ensure that the solution fluxes are conserved across block interfaces. For three-

dimensional multi-block body-fitted meshes at each time step during the solution

procedure, the flux correction is determined and applied as follows:

• the fluxes of the four fine cells are summed, ~Ffine =
4∑

n=1

~Ffn An

/
Acoarse and are

then passed to its nearest neighbour solution blocks having a lower refinement
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Figure 4.18: Two layers of overlapping “ghost” cells contain solution information from
neighbouring blocks.
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level;

• evaluate ∆~F = ~Ffine − ~Fcoarse, where ~Fcoarse is the net flux through the face of

the coarse cell;

• correct the residual for the coarse cell (i, j, k) using ~Ri,j,k= ~Ri,j,k−CFL∆ti,j,kAcoarse∆F̃

Vi,j,k
,

where ∆ti,j,k is the time step and Vi,j,k is the cell volume.

A similar variant of this procedure can be applied for two-dimensional multiblock

meshes.

4.5 Domain Decomposition and

Parallel Implementation

4.5.1 Domain Decomposition

Domain decomposition is a technique of solving partial differential equations

(PDEs) by decomposing an original domain into a set of smaller sub-domains [167]. In

parallel computing for computational fluid dynamics, domain decomposition involves

decomposing a computational mesh and distributing the sub-meshes among the pro-

cessors in a multi-processor architecture. In this thesis, the computational domain of

interest is a multi-block mesh, which lends itself naturally to domain decomposition.

The solution blocks can be easily distributed to the processors, with more than one

block permitted on each processor as shown in Figure 4.19.

4.5.2 Load Balancing and Morton Ordering

Avoiding load imbalance and limiting the communication overhead are two impor-

tant considerations for a parallel solution algorithm. Many factors can lead to the load

imbalance and communication overhead, such as characteristics of the computational

architectures and/or the nature of the numerical algorithm.

Some strategies can be implemented to achieve effective load balancing and re-

duce communication costs. For homogeneous architectures (identical processors), as
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used herein for all parallel computations, an effective load balancing is achieved by

exploiting the self-similar nature of the solution blocks and simply distributing the

blocks equally among the processors. For heterogeneous parallel machines, such as

a network of workstations, a weighted distribution of the blocks can be adopted to

preferentially place more blocks on the faster processors and less blocks on the slower

processors. In some cases, the amount of work for each block might be variable. For

example, the prediction of turbulent combusting flows can result in some blocks being

significantly more involved in performing finite-rate chemical kinetics calculations. In

such situations, it may become necessary to design a weighting algorithm based on

the computation time for each solution block. The domain decomposition procedure

can then detect and handle in a dynamic fashion load imbalances which may occur

during the code execution.

Placing nearest-neighbour blocks on the same processor can also help to reduce

the overall communication costs. This is usually realized by utilizing space-filling

curves which can provide rather high quality partitions at very low computational

costs [168–170] due to their “proximity preserving” mappings of a multidimensional

space to one-dimensional space. In this work, a Morton ordering space-filling curve

is adopted to provide nearest-neighbour ordering of the solution blocks in the multi-

block quadrilateral and hexahedral AMR meshes, and improve the parallel perfor-

Processor 0 1 2 N-1

..........

Figure 4.19: Domain decomposition is carried out by farming the solution blocks out
to the separate processors, with more than one block permitted on each processor.
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mance of the proposed solution method [170]. Figures 4.20–4.22 show the Morton

ordering space filling curves (colored red lines) passing through each of the solution

blocks (solid black lines) in a two-dimensional multiblock quadrilateral mesh, and

two three-dimensional multiblock hexahedral meshes for a box geometry and a gas

turbine combustor simulator, respectively.

4.5.3 Implementation Using MPI

The parallel implementation of the block-based AMR scheme was developed using

the C++ programming language [171] and the MPI (message passing interface) library

[172]. Use of these standards greatly enhances the portability of the computer code.

Inter-processor communication is mainly associated with block interfaces and involves

the exchange of ghost-cell solution values and conservative flux corrections at every

stage of the multi-stage time integration procedure. Message passing of the ghost-cell

values and flux corrections is performed in an asynchronous fashion with gathered

wait states and message consolidation.

The proposed domain decomposition procedure results in an efficient and highly

scalable parallel algorithm that has been applied to the prediction of laminar com-

busting flows [94], turbulent combusting flows [95, 96], turbulent multi-phase rocket

motor core flows [173], micro-scale flows [174], and compressible flows with a high-

order scheme [175], in two space dimensions and the predictions for turbulent com-

busting flows in three space dimensions [97]. Details of the parallel performance of the

solution method, along with numerical results for two- and three-dimensional flows,

follow in Chapters 5 and 6.



Figure 4.20: Morton ordering space filling curve used to provide nearest-neighbor
ordering of blocks for efficient load balancing of blocks on multiple processors. The
colored red line represents the space filling curve passing through each of the solution
blocks in the multi-block quadrilateral mesh.
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Figure 4.21: Morton ordering space filling curve used to provide nearest-neighbor
ordering of blocks for efficient load balancing of blocks on multiple processors. The
colored red line represents the space filling curve passing through each of the solution
blocks in the multi-block hexahedral mesh for a box.
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Figure 4.22: Morton ordering space filling curve used to provide nearest-neighbor
ordering of blocks for efficient load balancing of blocks on multiple processors. The
colored red line represents the space filling curve passing through each of the solution
blocks in the multi-block hexahedral mesh for a gas turbine combustor simulator.





Chapter 5

Verification of Proposed

Numerical Scheme

Verification and validation of CFD solutions and/or simulations is an important

component of solution algorithm development in order to establish credibility and

performance of newly proposed methods. While no standards yet exist for CFD

verification and validation, verification and validation guidelines have been estab-

lished by the AIAA [176]. According to these guidelines, validation is defined as the

“process of determining the degree to which a model is an accurate representation

of the real world from the perspective of the intended uses of the model” whereas

verification is defined as the “process of determining that a model implementation

accurately represents the developer’s conceptual description of the model and the so-

lution to the model” [176]. In other words, a verification assessment examines if the

implementation of the mathematical model and/or solution procedure is correct and

produces expected results. A validation assessment determines the degree to which

the predicted numerical results agree with the known science and/or physical reality.

While a complete and formal verification and validation study has not been carried

out for the proposed parallel AMR scheme described herein, partial verification of

some key aspects of the proposed solution method is provided in this chapter by

considering numerical predictions for several one-, two-, and three-dimensional flow

problems with well established solutions. Both non-reacting and reacting flows are

95



96 Chapter 5. Verification of Proposed Numerical Scheme

considered. Having established some credibility in this manner, the performance of

the proposed parallel solution algorithm for turbulent non-premixed combusting flows

(with some validation) is then considered in Chapter 6.

An overview of this chapter is as follows. Section 5.1 compares the predictions

to the analytic solution for a shock tube problem to verify the implementation of

the inviscid operators. In Section 5.2, the calculations of a non-reacting laminar

cavity flow driven by a moving lid and a Couette flow in a channel with a moving

wall are considered in order to verify the implementation and accuracy of the spatial

discretization scheme for the viscous operators. Section 5.3 provides verification of the

turbulence two-equation k-ω model implementation by comparing numerical results

to the experimental data of Laufer for non-reacting fully-developed turbulent flows in

both a duct and a pipe. The preconditioned multigrid convergence-acceleration for

the turbulent pipe flow is also discussed. The parallel efficiency of the parallel AMR

algorithm is assessed for two-dimensional flows. Finally, Section 5.4 provides partial

verification of the proposed algorithm for reactive flow simulations.

The parallel implementation of the proposed parallel AMR scheme was carried

out on a parallel cluster of 4-way Hewlett-Packard ES40, ES45, and Integrity rx4640

servers with a total of 244 Alpha and Itanium 2 processors. A low-latency Myrinet

network and switch are used to interconnect the servers in the cluster. All of the

numerical results reported in this chapter were obtained using this parallel cluster.

5.1 Verification of Inviscid Operators

Previous studies have considered the verification of the inviscid spatial discretiza-

tion operators used herein for two-dimensional flows [94,177]. Further verification of

the implementation and accuracy of the inviscid operators is provided here by com-

paring numerical predictions to the analytic solution of a one-dimensional shock-tube

problem for a non-reacting inviscid gas. The initial data for the one-dimensional

shock-tube problem contains two regions of stagnant gas (left and right), at different

pressures (pL/pR =10) and densities (ρL/ρR =10). The working gas is assumed to be

air and is defined in terms of its two major components: nitrogen (N2) and oxygen
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(O2), with mass fractions CN2 = 0.735 and CO2 = 0.235, respectively. The mixture

was assumed to have a fixed composition and to be non-reacting with thermodynamic

properties obtained from the McBride and Gordon empirical data sets [104].

The shock-tube problem was solved in a time accurate fashion using a second-order

Runge-Kutta method until time t = 6.1 ms. The Roe flux function with the Barth-

Jespersen limiter, was used to solve the problem on a 10 m by 1 m computational grid

of 128 × 2 cells using the two-dimensional algorithm, and on a 10 m by 1 m by 1 m

computational grid of 128 × 2 × 2 cells using the three-dimensional algorithm, with

a CFL number of 0.5. The predictions of the density, pressure, Mach number and

velocity are all compared to the analytic solution in Figures 5.1(a)–5.1(d). It can be

seen that the two- and three-dimensional results are virtually identical and agree very

well with the analytical solution. Numerical predictions were also carried out for

both the two-dimensional shock box and the three-dimensional shock cube problems

and the results are compared to each other. Again, air was used as the working gas

and the flow was taken to be initially stagnant with a quarter region of this square

domain having a pressure of 1.013×105 Pa and a density of 1.225 kg/m3. The rest

of the domain was assigned a pressure and density of four times that of the low

pressure region. The predictions were obtained for time t = 2 ms using the same time

marching method, flux function and the limiter as those prescribed above. A 1 m by

1 m computational grid of 96×96 cells was used for solutions from the two-dimensional

algorithm, and a 1 m by 1 m by 1 m computational grid of 96×96×2 cells was used for

solutions from the three-dimensional algorithm. The CFL number in both cases was

0.65. The predictions of the Mach number and pressure for the shock-box problem

are compared in Figures 5.2(a)–5.2(d). The Mach number contours obtained using

the two- and the three-dimensional algorithms are identical to each other as shown

in Figures 5.2(a) and 5.2(b) and so are the predictions for pressure as indicated by

Figures 5.2(c) and 5.2(d). Note the three-dimensional results are compared here by

considering a two-dimensional cross section of the solution. The good agreement

between the two- and three-dimensional results for this case, combined with the good

agreement found in the one-dimensional case described above, are strong indications

that the inviscid operators have been correctly implemented.
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Figure 5.1: Comparisons of the numerical predictions obtained from two- and three-
dimensional algorithms and the analytic solution for the one-dimensional shock-tube
flow problem.

5.2 Verification of Viscous Operators

5.2.1 Two-Dimensional Laminar Couette Flow

The computation of non-reacting laminar Couette flow of air in a channel with a

moving wall was considered in order to demonstrate the accuracy of the viscous spatial
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Figure 5.2: Predicted Mach number and pressure contours obtained from two- and
three-dimensional algorithms for the shock box flow problem.

discretization scheme. The case considered has an upper wall velocity of 29.4 m/s and

a favourable pressure gradient of dp/dx= −3, 177 Pa/m. Numerical solutions were

obtained on a domain of 0.2 m by 0.001 m with a computational grid of 60× 80 cells.

The results are compared to the exact analytical solution that can be obtained for

this case. The predicted velocity profile is compared to the exact analytic solution
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Figure 5.3: Numerical predictions of two-dimensional laminar Couette flow, Re =
1.98×103 and Ma=0.086.

for this essentially incompressible isothermal flow in Figure 5.3(a). Good agreement

between the numerical and analytical solutions can be observed. The L1-norm of the

error in axial component of velocity is also shown in Figure 5.3(b). The slope of the

norm is 2.02, indicating that the proposed finite-volume scheme is indeed second-order

accurate.

5.2.2 Two-Dimensional Laminar

Flat Plate Boundary Layer Flow

The computation of laminar flow of non-reacting air over a flat plate at zero

incidence is considered next to further demonstrate the accuracy of the viscous spatial

discretization procedure. The flat plate has a length of 0.002 m. The computational

domain was 0.018 m×0.008 m. At the inflow plane of the computational domain,

which is set about 0.008 m upstream from the leading edge of the plate, Dirichlet-

type boundary conditions were used for all flow quantities except for pressure. A

Neumann-type boundary condition was used for the pressure. An adiabatic wall

boundary condition was applied to the surface of the flat plate. At the outflow
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Figure 5.4: Numerical predictions of two-dimensional Laminar flat plate boundary
layer, Re=1.0×104 and Ma=0.2.

plane, the ambient pressure was specified and Neumann-type boundary conditions

are applied for all other flow quantities. The free-stream Mach number and Reynolds

number, based on the length of the plate, for the case considered are Ma=0.2 and of

Re=1.0×104, respectively. The exact solution of the incompressible boundary layer

equations first obtained by Blasius is given by Schlichting [178].

The predictions of the non-dimensional x-direction velocity component and the

skin friction coefficient were obtained on a mesh consisting of 92 blocks and 70,656

cells. The mesh was clustered towards the surface of the flat plat and the first cell

normal to the plate is located at a distance of approximately 3×10−5 m. The profiles

of x-direction velocity component shown in Figure 5.4(a) are at Rex=8.0×103. Fig-

ure 5.4(b) compares the numerical and the exact analytical skin friction coefficients.

It can be seen that the x-direction velocity component and the skin friction coefficient

are in excellent agreement with the Blasius solution, providing further confidence in

the scheme’s accuracy.
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5.2.3 Two-Dimensional Laminar Cavity Flow

The proposed two-dimensional solution algorithm has also been applied to a well

known benchmark problem: lid-driven cavity flow. Figure 5.5 shows a schematic of

the cavity-flow geometry and the boundary conditions. Despite its simple geometry,

the driven cavity flow possesses rich flow physics manifested by multiple counter-

rotating and re-circulating regions in the corners of the cavity depending on the

Reynolds number. The steady laminar flow in this square, lid-driven cavity with a

moving wall velocity of 34.1 m/s (Re = 100) was computed and compared with the

previous computational results of Ghia et al. [179].

The solutions to the lid-driven cavity flow problem described above were obtained

on a sequence of refined meshes to establish the grid-convergence of the solution. In

particular, predictions have been obtained on a sequence of three adaptively refined

grids, each consisting of blocks with 8×8 cells: 16 blocks (1,024 cells), 64 blocks

(4,096 cells), and 97 blocks (6,656 cells). Figures 5.6(a) and 5.6(b) illustrate a mesh

with 5-levels of refinement giving a refinement efficiency of 0.75 and as well as a

mesh with 7-levels of refinement having a refinement efficiency of 0.976. Note that

the refinement efficiency is defined as η = 1 −Ncells/Nuniform where Ncells is the total

number of cells and Nuniform is the total number of cells that would have been used

on a uniform mesh composed of cells of a size corresponding to the finest level of

refinement. Figures 5.6(c) and 5.6(d) show the u velocity contours corresponding to

the meshes in Figures 5.6(a) and 5.6(b), respectively. The results from the refinement

study are shown in Figures 5.7(a) and 5.7(b). The u-velocity profiles along a vertical

line and the v-velocity profiles along a horizontal line along the geometric center of the

cavity are shown and compared to the original numerical results of Ghia et al. [179]

which are indicated by the square symbols in Figures 5.7(a) and 5.7(b). These profiles

are in good agreement with the original numerical results. Moreover, it is apparent

that the predicted solution does not change appreciably as the mesh is refined from

4,096 cells to 6,656 cells. In this sense, the numerical solutions can be said to be grid

independent.

As mentioned in Section 3.3.2, multigrid convergence was significantly affected by
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the prolongation operator for highly stretched meshes. The effect of four different

prolongation operators on convergence rate for this laminar cavity flow was studied

using three stretched meshes. The size of the three meshes was same: 4 10 × 10 cell

blocks with 1,024 cells. The ranges of the cell aspect ratio for these three meshes were

about 1 to 250, 10 to 5.0×103, and 100 to 1.0×106. Figures 5.8(a) and 5.8(b) show

the mesh whose cell-aspect-ratio range is from 10 to 5.0×103 and the convergence

comparisons for this mesh, respectively. The mesh shown has mesh points clustering

toward the four corners. This is a feature of the other two meshes considered in the

prolongation study.

The four prolongation operators of interest are simple injection, cell-area weighted

interpolation, standard bi-linear interpolation, and standard bi-linear plus linear in-

terpolation. The convergence results from the four prolongation operators provide

similar performance for the mesh with cell aspect ratios of 1 to 250. For the case

with mesh having a cell-aspect-ratio range of 100 to 1.0×106, the calculation failed

to converge for both the bi-linear plus linear and the bi-linear operators, while the

simple injection operator converged faster than the cell-area weighted operator. This

indicates that the simple injection can be used for meshes having high cell-aspect-

ratios. Figure 5.8(b) shows that, overall, both the standard bi-linear operator and

the bi-linear plus linear operator result in the fastest convergence rate among the pro-
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Figure 5.5: Schematic of a two-dimensional driven-cavity laminar flow.
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(a) Medium mesh consists of 64 8×8 cell blocks

(4,096 cells): 5 levels of refinement with a refine-

ment efficiency of 0.75.

(b) Fine mesh consists of 97 8× 8 cell blocks

(6,656 cells): 7 levels of refinement with a re-

finement efficiency of 0.976.

(c) u contour on the medium mesh (d) u contour on the fine mesh

Figure 5.6: Two refined meshes used in the numerical solution of the laminar lid-
driven cavity flow and the computed u velocity contours for the medium mesh (4,096
cells) and the fine mesh (6,656 cells).

longation operators, the simple injection seems sufficient, and the cell-area weighted

operator is the slowest.

Based on this study, it is suggested that a cell-aspect-ratio-based sensor can be



Section 5.2. Verification of Viscous Operators 105

u/V lid

y/
L

lid

-0.4 0 0.4 0.8
0

0.2

0.4

0.6

0.8

1

Ghia et. al.
16 blocks (8x8) 1,024 cells
64 blocks (8x8) 4,096 cells
97 blocks (8x8) 6,208 cells

(a) u-velocity profile

x/L lid

v/
V

lid

0.2 0.4 0.6 0.8 1
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

Ghia et. al.
16 blocks (8x8) 1,024 cells
64 blocks (8x8) 4,096 cells
97 blocks (8x8) 6,208 cells

(b) v-velocity profile

Figure 5.7: Comparison of computed velocity profiles along the vertical and the hori-
zontal center-line of the cavity with data of Ghia et al. (1982), Re=100 and Ma=0.1.

applied as a switch in the approach of the prolongation operator. For the two-

dimensional cases with relatively complex geometry considered in Chapter 6, a cell-

aspect-ratio-based sensor was implemented in the multigrid algorithm as follows: sim-

ple injection is used for cells with aspect ratio higher than a cutoff value, and standard

bi-linear interpolation is then employed for cells with aspect ratios lower than that

cutoff value.

5.2.4 Three-Dimensional Laminar Couette Flow

The computation of non-reacting laminar Couette flow in a channel with a moving

wall was re-considered in order to demonstrate the accuracy of the viscous spatial

discretization scheme in the three-dimensional case. Again, Couette flow with an

upper wall velocity of 29.4 m/s and a favourable pressure gradient of dp/dx=−3, 177

Pa/m was investigated on a 0.2 m by 0.001 m by 0.001 m computational grid of 60×
80×2 cells. The cell-face gradients are evaluated using the formula (Equation (3.36))

proposed by Mathur and Murthy [119]. The predicted velocity profile is given and

compared to the exact analytic solution for this nearly incompressible isothermal
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Figure 5.8: Influence of different prolongation operators on the multigrid convergence
for the laminar cavity flow with a stretched mesh having cell aspect ratios from 10 to
5.0×103.

flow in Figure 5.9. Note that the exact solution is based on the assumption that the

flow is incompressible (ρ = constant, Ma → 0). It can be seen that the predicted

results of the three-dimensional algorithm match well with the analytic solution and

the two-dimensional predictions, providing support for that the implementation of

the numerical viscous flux operators in the three-dimensional version of the proposed

solution scheme is correct.

5.3 Verification of k-ω Turbulence Model

The classical problems of flow in a channel, or duct, and a pipe are excellent cases

for verifying the implementation of the k-ω turbulence model considered here. The

flow becomes fully-developed at locations sufficiently far from the inlet, i.e., properties

no longer vary with distance along the channel/pipe.

The verification of the implementation of the k-ω turbulence model for non-

reacting turbulent flows was performed by comparing numerical results to the ex-

perimental data of Laufer [1, 180] for non-reacting, fully-developed turbulent flow in
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Figure 5.9: Computed u-velocity profile along vertical center-line of the laminar Cou-
ette flow compared to the analytic data and the two-dimensional calculated profile,
Re=1.98×103 and Ma=0.086.

a circular cross-section pipe and a rectangular channel. The working gas was air in

both cases. For the pipe flow, the radius of the pipe was 0.123 m and the Reynolds

number based on the center-line velocity, Uo = 30.48 m/s, was Re = 5.0×105; for

the channel flow, the width of the channel was 0.127 m and the Reynolds number

based on the center-line velocity, Uo = 7.4 m/s, was Re = 6.16×104. The results

of the comparisons between the predictions of the proposed solution algorithm and

experimental data are now discussed.

5.3.1 Two-Dimensional Fully-Developed Pipe Flow

Numerical solutions were first carried out for two-dimensional (axisymmetric)

fully-developed turbulent pipe flow. Solutions for both the wall function and low-

Reynolds-number formulation of the k-ω turbulence model are compared to mea-

sured mean axial velocity and turbulent kinetic energy profiles in Figures 5.10(a) and
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Figure 5.10: Comparison of predicted solutions with experimental data [1] for fully
developed turbulent pipe flow, Re=5.0×105 and Ma=0.089.

5.10(b). Calculations with the low-Reynolds-number formulation were performed us-

ing 80 cells in the radial direction with 3-4 of those cells lying within the laminar

sublayer. The first cell off the wall was located at y+≈0.6. The result using the wall

function was obtained using 32 cells in the radial direction with the first cell located

at y+≈43. The agreement between the experimental data and numerical results for

this case is generally quite good. As expected, it is evident that the k-ω model is able

to reproduce the characteristic features of fully-developed pipe flow.

Multigrid Acceleration

Convergence acceleration provided by the preconditioned multigrid algorithm was

also examined for the fully developed turbulent pipe flow problem. A mesh of size

1,024 cells and having cell aspect ratios in the range of 10 to 2×105 and an off-wall

spacing of 7.0×10−7 m was used in this study. There were 32 cells in the radial

direction and an automatic wall boundary treatment was employed. The influence

of using different multigrid levels and cycles on convergence features has also been

investigated.
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Figures 5.11(a) and 5.11(b) compare the convergence rates achieved for the turbu-

lent pipe flow using the explicit time marching scheme with local time-stepping, the

proposed multigrid algorithm with explicit smoother, and the preconditioned multi-

grid approach described in Chapter 3. The convergence rate is shown as a function

of both the number of iterations and the number of equivalent right-hand side (RHS)

evaluations. Clearly, the preconditioned multigrid results in a more efficient conver-

gence rate than the others. Notice from the figures that the preconditioned multigrid

algorithm exhibited a convergence stall after the residual in the turbulent kinetic en-

ergy dropped to be about 104. It is felt that this effect is due to the nonlinear nature

of the slope limiters and their activation in smooth regions of the flow field [124].

This convergence stall can be alleviated by freezing the limiter after the residual has

dropped to a predefined level; however, this technique was not employed here.

Theoretically, the work count of multigrid has a linear relationship with the num-

ber of unknowns and hence mesh size. Even for this relatively simple case, the ideal

linear relationship is not being achieved. Figure 5.12 shows the increase in compu-

tational work as a function of mesh size for the fully-developed turbulent pipe flow.

For this case, the work increases as the mesh size to the power of about 1.8 (i.e., work

∝ N1.8). Nevertheless, the current preconditioned multigrid is certainly effective and

provides rather significant convergence acceleration.

Tables 5.1–5.3 summarize some convergence features for the fully developed tur-

bulent pipe flow problem. Note that the maximum grid level for these cases was

chosen to be 3, allowing for relatively smaller-sized solution blocks. Table 5.1 lists

the numerical data from using both the regular and the preconditioned multigrid and

the results for grid-level and multigrid-cycle effects are presented in Table 5.2 and

Table 5.3. The term work unit (WU) is defined as the time for one right-hand-side

evaluation on the finest mesh.

Table 5.1 indicates that the preconditioned multigrid with 5-stage optimal smooth-

ing scheme produces a 14 times speedup over multigrid without a preconditioner and

is shown in Figure 5.13(a). For both cases, the L2 norms of the residual for the so-

lution quantity of turbulent kinetic energy drop about six orders of magnitude. The

data from Table 5.2 shows a speedup factor of four between the 3-level multigrid and
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Figure 5.11: Comparisons of 4-level V-cycle multigrid convergence between regular
multigrid and preconditioned multigrid with a 5-stage optimal smoothing scheme for
the fully-developed turbulent pipe flow.

the single-level computation. This grid-level influence on the convergence is shown

in Figure 5.13(b). The convergence rate of 2-level is the same as that of a 3-level for

this case, and both used the V-cycle. The same convergence rates for both 2- and 3-

level might be due to the fact that the turbulence source terms were not recalculated

on the coarse meshes. Figure 5.14 shows that the 3-level V- and W-cycle precondi-

tioned multigrid algorithms, using a 5-stage optimal smoothing scheme, have nearly
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Figure 5.12: Convergence rate and computational work in terms of CPU time of a
3-level preconditioned multigrid with 5-stage optimal smoothing scheme for the fully-
developed pipe flow showing effects of computational mesh size (3 mesh sizes: 1,024;
4,096; 16,384).

the same speedup in terms of multigrid cycles, while Table 5.3 indicates the V-cycle

uses about half the computation time of the W-cycle. The reason might be that the

W-cycle is expensive in a parallel algorithm when frequent coarse-level calculations

lead to poor processor utilization. From these results, it appears that a 3-level V-cycle

preconditioned multigrid should deliver an optimal speed up for computing turbulent

flows. For this reason, the 3-level V-cycle preconditioned multigrid was employed
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in the numerical predictions of the two-dimensional reactive and non-reactive flows

described in next chapter.

Table 5.1: Matrix-preconditioner effects on convergence of the 4-level V-cycle multi-
grid for the fully-developed turbulent pipe flow.

Method CPU time [min] WUs speedup CPU (WUs)
Multigrid 210.5 17542 1

Preconditioned multigrid 15 1250 14

Table 5.2: Grid-level effects on convergence of the V-cycle preconditioned multigrid
for the fully-developed turbulent pipe flow.

Method CPU time [min] WUs speedup CPU (WUs)
Single-level 35.8 2983 1

2-level 10.9 908 3.3
3-level 9.69 807.5 3.7

Table 5.3: The V- and W-cycle effects on convergence of the 3-level preconditioned
multigrid for the fully-developed turbulent pipe flow.

Method CPU time [min] WUs speedup CPU (WUs)
W-cycle 38 3166.7 1
V-cycle 22 1833.3 1.72

Parallel Performance

Parallel speedup, parallel scale-up, and parallel efficiency are often used to mea-

sure/evaluate the parallel performance of a parallel algorithm. The parallel speedup,

Sp, is defined as

Sp =
t1
tp
, (5.1)

the parallel scale-up, Sφ, defined as

Sφ =
t1
tp
p , (5.2)



Section 5.3. Verification of k-ω Turbulence Model 113

Multigrid cycles

||
R

(
k

)
|| 2

0 500 1000
104

105

106

107

108

109

1010

Multigrid
Preconditioned Multigrid

(a) Effect of matrix preconditioner on multigrid

convergence rate

Multigrid cycles

||
R

(
k

)
|| 2

0 200 400

103

104

105

106

107

108

109

1010

Single-grid
2-grid
3-grid

(b) Effect of number of grid-levels on multigrid

convergence rate
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and the parallel efficiency, Ep is defined as

Ep =
Sp
p
, (5.3)

where t1 is the time required to solve the problem by a single processor, and tp is the

time required to solve the problem by p processors.
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Figure 5.14: Comparisons between the V- and W-cycle preconditioned multigrid con-
vergence rates of a 3-level preconditioned multigrid with 5-stage optimal smoothing
scheme for the fully-developed pipe flow.

Parallel speedup, also know as strong scaling, is measured by taking a fixed size

problem and solving the problem using an increasing number of processors. If the

solver produces a result p times faster when p processors are used, then the algorithm

has perfect speed up. Parallel scale-up or weak scaling is measured by increasing the
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size of the problem as the number of processors is increased. Parallel performance

in this case in then assessed by considering the time to solve the problem, which

ideally should remain the same for any number of processors. While both the parallel

speedup and the parallel scale-up are important to consider, the parallel speedup is

probably more relevant for engineering problems of practical interest.

High efficiency for strong scaling is generally harder to achieve than for the weak

scaling problem. Virtually, all programs contain both parallel and serial portions.

The wall clock time of the parallel parts is reduced by using an increasing number of

processors, but the time for sequential parts remains the same. Eventually, the time

spent in the sequential parts can dominate the entire program execution time and

puts an upper limit on the expected speedup. This effect, known as Amdahl’s law, is

represented by the formula [181]

Sp =
1

(f/p+ (1 − f))
, (5.4)

where f is the parallel fraction of the program. In this thesis, by careful design, vir-

tually entire algorithm can be executed in parallel and theoretically f=1. Therefore,

a perfect speedup should be expected. Nevertheless, a small serial fraction is intro-

duced by some minor non-parallel aspects of the implementation and by the message

passing and MPI library and/or other components of the operating system. There-

fore, a perfect speedup is not (always) expected according to the Amdahl’s law. This

is illustrated by the results given below.

The parallel speedup and efficiency of the proposed parallel solution-adaptive

algorithm applied to the two-dimensional turbulent pipe flow problem with a fixed

size grid (64 blocks) has been assessed. Figure 5.15 shows that the parallel speedup of

the block-based AMR scheme (without multigrid acceleration) is nearly linear and is

at least 90% efficient for up to 32 processors using the larger (10×10) solution blocks.

For the smaller (8 × 8) blocks, the efficiency drops slightly down to 87% efficient.

Table 5.4 illustrates the parallel fraction of the program (the problem of 64 10 × 10

solution blocks) based on the measured Sp, for different numbers of processors. An

estimate of the parallel fraction provides an indication of how Amdahl’s law will affect

the strong scaling. Interestingly, the serial fraction of the algorithm seems to increase
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Table 5.4: The parallel fraction of the program varies with increasing the number of
processors

CPU(s) f

4 100%
8 100%
16 99.84%
32 99.52%

somewhat with the number of processors. However, this sequential fraction remains

extremely low (0.16%–0.48%) and, based on this analysis, the proposed algorithm

can be seen to be well suited for scaling to relatively larger numbers of processors.

This rather high level of performance should generally be expected for the two-

dimensional version of the algorithm with the explicit time marching scheme. In this

case, the communication overhead is low (on the order of 5–7%) and high parallel

efficiency is achieved for a well load-balanced problem.
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Figure 5.15: Parallel speedup (strong scaling), Sp and the parallel efficiency, Ep, for
a fixed size problem using up to 32 processors.
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The parallel performance of the proposed solution-adaptive method for both two-

and three-dimensional reactive-flow cases is considered later in Chapter 6 of this

thesis.

5.3.2 Three-Dimensional Turbulent Channel

and Pipe Flows

Numerical solutions obtained using the proposed parallel AMR scheme in three

dimensions for both the turbulent channel and pipe flows are now investigated with

the results given in Figures 5.17(b)–5.18(a). The numerical predictions for the pipe

flow were obtained by using three types of near wall turbulence treatment: (1) low-

Reynolds number formulation, i.e., integrating the transport equations for the two-

equation turbulent model through the laminar sublayer directly up to the solid wall;

(2) standard wall function; and (3) automatic near-wall treatment with a switching

procedure (Equation (2.29)). The calculations were performed on a quarter of a pipe

geometry. Numerical results were obtained from three meshes. There were 80 cells in

the radial direction for the calculation with the low-Reynolds number formulations,

40 cells for the calculation with the automatic switching function, and 32 cells for the

standard wall function.

Two cross-sections of the meshes used in the pipe-flow calculations along with

colour contours of the values of y+
1 in each computational cell are shown in Fig-

ures 5.16(a)–5.16(d). The xy-plane views of the two meshes as used in both the low

Reynolds number formation and the automatic near-wall treatment, are shown in

Figures 5.16(a) and 5.16(b), respectively. The meshes are stretched and clustered

toward the solid wall and the first y+
1 values are 0.45 and 16.6 for the two cases,

respectively. There were two cells in the viscous sublayer for the calculation using

the low-Reynolds formulation.

The predictions of the mean axial velocity and turbulent kinetic energy from the

three types of near-wall turbulence treatment are compared to the experimental data

of Laufer [1,180] in Figures 5.17(a) and 5.17(b). In general, the numerical results for

the three different wall treatments are very close to one another. Good agreement
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(a) Low Reynolds number formulation (b) Automatic near-wall treatment
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Figure 5.16: Comparisons of cross-section of meshes (only showing two blocks close
to the wall) and different y+

1 for fully developed turbulent pipe flow, Re = 5.0×105

and Ma=0.089.

between the experimental data and numerical results is also observed. Figure 5.17(b)

indicates that predictions of the turbulent kinetic energy from the three approaches

are almost exactly the same except in the region close to the solid wall, which is

not surprising because of the different near-wall treatments. Figure 5.17(c) shows a

close-up of this feature. Clearly, the low-Reynolds number formulation has the best

prediction of the peak value of turbulent kinetic energy. The wall function under-

predicts the turbulent kinetic energy more than the others. The profile computed

from using the automatic switching function falls in between and indicates that the

automatic near-wall treatment appears to work well. Figure 5.17(d) shows the nu-
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Figure 5.17: Comparison of predicted solutions with experimental data [1] for fully
developed turbulent pipe flow, Re=5.0×105 and Ma=0.089.

merical prediction of the typical velocity profile for the turbulent boundary layer of

the pipe flow.

For the turbulent channel flow calculation, a grid consisting of 32 cells in the

cross-channel with stretching towards the wall and with 2-3 of these computational
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Figure 5.18: Comparison of predicted solutions with experimental data [1] for fully
developed turbulent channel flow, Re=6.16×104 and Ma=0.022.

cells within the laminar sublayer was used. The first cell from the wall was located

at y+
1 =0.07. Figures 5.18(a) and 5.18(b) compare the predictions of the mean axial

velocity and turbulent kinetic energy to the experimental data of Laufer [1]. As for

the turbulent pipe-flow, good agreement between the numerical and the experimental

data is again observed. It is evident that the k-ω model is able to reproduce the

characteristic features of these two fully-developed non-reacting turbulent flows.

5.4 Verification of Chemical Kinetics

Partial verification of the implementation of the chemical kinetics and thermody-

namic and transport models used herein for describing methane-air combustion has

been carried out by performing laminar flame speed and flame structure computations

for a one-dimensional steady-state premixed flame. Note that similar one-dimensional

premixed flame calculations were performed in earlier work of Northrup [94]. In

particular, Northrup considered the six-species two-step chemical kinetics scheme of

methane-air combustion. The predictions were in good agreement with the predicted
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values of a 17-species, 58-reaction scheme provided by CHEMKIN. As noted earlier

in Chapter 2, a five-species one-step reduced chemical-kinetics scheme for methane

oxidization is used for all of the reactive flow calculations described in this thesis.

The structure of the stoichiometric premixed flame and the laminar flame speed was

determined for this one-step chemical kinetics model and compared to the values

obtained using the CHEMKIN program PREMIX.

The computational domain consists of 100 × 2 cells on a solution domain of

0.02 m × 0.0002 m with a mesh clustered near the flame front located at the center

of the domain. Initially, a stoichiometric mixture of premixed fuel and air was es-

tablished on one side of the computational domain and the burnt products on the

other side. The inlet and outlet boundary velocity and pressure were then adjusted

to ensure the constant mass flux throughout domain (see Northrup [94] for details on

the boundary conditions). The Roe flux function with the Venkatakrishnan limiter

was used together with a four-stage optimally smoothing time-marching method and

a CFL number of 0.25 to achieve a steady-state solution. Low-Mach number precon-

ditioning was also employed for convergence acceleration and to avoid introducing

excessive numerical dissipation for this low-Mach-Number flow.

The numerical predictions of the laminar flame structure is well represented by

the profiles of the mass fraction, velocity, and temperature of Figure 5.19. Fig-

ures 5.19(a)–5.19(c) show the variation of these quantities through the flame. For the

five-species, one-step model, the predicated laminar flame speed was about 45 cm/s

and the flame temperature was 2300 K. Both values are slightly higher than the lam-

inar flame speed and flame temperature provided by CHEMKIN, which were 41 cm/s

and 2234 K, respectively. In general, the predictions of the one-step model are are

thought to be acceptable considering the simplified one-step chemical kinetics. Fig-

ure 5.19(d) shows the small variations in Lewis number for each of the species across

the flame. This also agrees with published data [11] and provides additional confi-

dence in the modelling of mixture transport properties used herein.
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Figure 5.19: Predicted profiles for a stoichiometric, φ= 1.0, premixed one-dimensional
methane and air flame solution.



Chapter 6

Numerical Results

This chapter considers the application of the proposed parallel AMR scheme to

the prediction of both two-dimensional (axisymmetric) and three-dimensional tur-

bulent non-reacting flows and turbulent non-premixed flames. The numerical simu-

lations were performed for a bluff-body burner and, for the reacting cases, gaseous

methane fuel was considered. In each case, the numerical predictions are compared

to the experimental data provided by the International Workshop on Measurement

and Computation of Turbulent Non-premixed Flames [182].

As for the results discussed in Chapter 5, the parallel AMR scheme was imple-

mented on a parallel cluster of 4-way Hewlett-Packard ES40, ES45, and Integrity

rx4640 servers with a total of 244 Alpha and Itanium 2 processors. The intercon-

nection between the servers in the cluster was achieved using a low-latency Myrinet

network and switch. All of the numerical results reported here were obtained using

this parallel cluster.

6.1 Bluff-Body Burner Flows

6.1.1 Bluff-Body Burner Flow Geometry

The International Workshop on Measurement and Computation of Turbulent Non-

premixed Flames [182] has established an internet library of well-documented experi-

123
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mental database for turbulent non-premixed flames that are appropriate for combus-

tion model verification and validation. The Sydney bluff-body burner configuration

that forms part of this experimental database has data available for both non-reacting

and reacting cases. The configuration for the Sydney bluff-body burner is shown in

Figure 6.1. The bluff-body has a diameter of Db=50 mm and is located in a co-axial

flow of air. Various gases can be injected through an orifice of diameter 3.6 mm at

the base of the cylindrical bluff body. The bluff-body stabilized flames have a recir-

culation zone close to the base of the bluff body. This burner configuration produces

a relatively extensive and complex turbulent field and causes intense mixing between

the reactants and combustion products. The stabilization mechanisms resemble those

of industrial combustors and yet the boundary conditions for the bluff-body flames

are simple and well-defined, making them well suited for investigating in great detail

the capabilities of models for turbulent non-premixed diffusion flames.

The Sydney bluff-body burner has been investigated and/or used for verification

and validation purposes in several recent studies (e.g., Dally et al. [183–189] and

Turpin and Troyes [190]). In this thesis research, the proposed parallel AMR algo-

rithm has been applied to the solutions of two non-reacting flow cases and one reacting

flow case. The three cases investigated herein are a non-reacting (cold) air flow case

for understanding the re-circulating flow field structure at the base of the burner; a

non-reacting (cold) mixing flow case for analyzing the mixing of the fuel and co-flow

streams; and finally, a reacting (hot) case. In the cold non-reacting bluff-body burner

flow case, air is injected through the orifice at the base of the cylindrical bluff body

with a temperature of 300 K and a bulk velocity of 61 m/s. The bulk velocity and

temperature of the co-flowing air are 20 m/s and 300 K, respectively. The Reynolds

and Mach numbers based on the high-speed jet are Re=193, 000 and Ma=0.18. For

the mixing (ethylene jet) case, ethylene (C2H4) is injected at the base of the bluff-

body with a bulk velocity of 50 m/s and a temperature of 300 K. The velocity and

temperature of the co-flowing air are the same as the cold air case. In the mixing case,

the Reynolds and Mach numbers based on the ethylene flow are Re = 145, 000 and

Ma=0.11. For the reacting case, methane (CH4) is injected through the orifice at the

base of the cylindrical bluff body with a temperature of 300 K. The bulk velocities
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Figure 6.1: Schematic of the Sydney bluff-body burner showing the fuel jet, co-flow,
and bluff-body geometry.

of the co-flowing air and methane fuel are 25 m/s and 108 m/s, respectively. The

Reynolds and Mach numbers of the methane jet are Re=315, 000 and Ma=0.24.
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6.1.2 Boundary Conditions

At the inflow planes of the computational domain for both the fuel jet and the co-

flow air, Dirichlet conditions are used for flow quantities such as density, velocities,

turbulent kinetic energy, the dissipation rate of the turbulent kinetic energy, and

species concentrations. A Neumann condition is used for the pressure. The symmetry

condition is applied on both the centre line and the shroud boundary. A no-slip

boundary condition is applied to the wall of the annulus pipe for the co-flow air. At

the outflow plane, the ambient pressure is specified and Neumann type boundary

conditions are applied for all other flow quantities. The co-flow air boundaries were

set wide enough to include the full boundary layer on the co-flow side and to ensure

that the boundary specifications do not influence the jet. The diameter of the co-flow

inlet pipe is about 3 Db and the axial length of the computational domain is 6 Db,

where Db is the bluff-body diameter.

In order to intentionally avoid sharp changes in velocity for computational pur-

poses, a power law is used to specify the initial axial velocity profiles in both the jet

and the co-flow and thereby approximate a fully-developed turbulent pipe flow. Ad-

ditionally, the initial radial velocities are taken as zero [182]. The axial distance of the

annulus pipe was extended further upstream to ensure that fully developed pipe flow

conditions prevail at the exit plane of the annulus pipe. Note that in the case of the

three-dimensional simulations, the flow fields were initialized with the steady-state

numerical solutions obtained from the two-dimensional calculations.

All three of the cases described above were solved in a two-dimensional axisym-

metric coordinate frame, and two of these cases, the cold-air flow case and the hot

case, were also considered for a general three-dimensional coordinate frame. The

three-dimensional calculations were performed on a quarter section of the bluff-body

burner as shown in Figure 6.2. In what follows, the predicted flow fields for the bluff-

body burner in both two dimensions and three dimensions are analyzed and compared

to the available experimental data.
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Figure 6.2: Depiction of the quarter section geometry used in three-dimensional nu-
merical simulations of Sydney bluff-body burner.

6.2 Axisymmetric Turbulent Diffusion Flame

6.2.1 Non-Reacting Cold Flow

The first case considered is the two-dimensional axisymmetric simulation of the

non-reacting cold flow. In this case, the air exits the fuel jet at a bulk velocity of

61 m/s into a co-flow of air flowing at 20 m/s. These flow conditions are classified as

“jet-dominant”, since the jet penetrates the re-circulation zone behind the wall of the

bluff-body and propagates in a jet-like manner further downstream. The solutions
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were determined for a sequence of refined meshes to establish the grid-convergence of

the solution. In particular, the flow-field predictions were carried out on a sequence of

four adaptively refined grids, each consisting of a number of 16×16 cell blocks: 5 blocks

(1,280 cells); 14 blocks (3,584 cells); 26 blocks (6,656 cells); and 53 blocks (13,568

cells). The refinement efficiency for the three sequential fine grids was 0.53, 0.675,

and 0.834. The mesh resolution was such that the typical size of the computational

cells nearest the wall was in the range 0.2 < y+ < 1.

The numerical predictions for this case and results of the refinement study are

shown in Figures 6.3–6.8. It is apparent that the majority of the solution values do

not change significantly as the mesh is refined from 6,656 cells to 13,568 cells. For

this reason it can be argued that the final numerical solution on the finest mesh is

virtually independent of the grid. Figure 6.3 shows the predicted mean axial velocity

and streamlines and reveals the formation of a double-vortex structure in the re-

circulation zone. The two vortices are important in controlling fuel/oxidizer mixing.

The calculations indicate that the re-circulation zone extends to x/Db≈0.8. This is

slightly less than the experimentally observed value of x/Db ≈ 1.0. The agreement

between the predictions and the experiments is further confirmed by a comparison of

the predicted axial (center-line) profile of the mean axial velocity component to the

experimental results as depicted in Figure 6.4 and by comparisons of the predicted

radial profiles of the mean axial velocity component at both x/Db=0.6 and x/Db=
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Figure 6.5: Comparison of predicted and measured radial profiles of mean axial ve-
locity at various locations downstream from the base of the bluff-body burner for
non-reacting flow with air jet.

1.0 downstream from the base of the bluff-body to the measured data as shown in

Figures 6.5(a) and 6.5(b). For each velocity profile, rather good agreement between

the numerical results and the experiments can be observed.

Figures 6.6 and 6.7 show a comparison of the root mean square (RMS) fluctuations

of the velocity components at the two downstream stations x/Db=0.6 and x/Db=1.0.

The predicted and measured specific Reynold stress u′v′ profiles are also compared

in Figure 6.8. It can be seen that there are under- and/or over-predicted regions

(r/Rb < 0.2). These regions encompass the inner vortex and the vicinity of the outer

vortex of a double-vortex structure in the re-circulation zone. Re-circulation zones

with complex turbulent structures are quite sensitive to the turbulence modelling

and a variety of RANS simulations have addressed this sensitivity to the turbulence

model and/or combustion models [188,191–193]. The overall agreement between the

numerical solution and the experimental data for these turbulence quantities is quite

reasonable and is comparable to other results reported in the literature [188,190,192].

6.2.2 Mixing Flow

Numerical results for the two-dimensional axisymmetric simulations of the mixing-

flow bluff-body burner problem are considered next. Numerical results for the cold

flow with an ethylene fuel jet are depicted in Figure 6.9, where the predicted mass
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Figure 6.6: Comparison of predicted and measured radial profiles of

√
u′2 at various

locations downstream from the base of the bluff-body burner for non-reacting flow
with air jet.
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Figure 6.7: Comparison of predicted and measured radial profiles of

√
v′2 at various

locations downstream from the base of the bluff-body burner for non-reacting flow
with air jet.

fraction of C2H4 obtained using a mesh consisting of 479 6×6 cell blocks (17,244

cells), with five levels of refinement, is compared to measured C2H4 concentrations.

The mesh resolution was again such that the typical size of the computational cells

nearest the wall was in the range 0.2 < y+ < 1. Qualitatively and quantitatively, the

numerical results appear to be quite reasonable when compared to the experimental

data. Additional quantitative comparisons of the numerical on-axis axial and radial

distributions (at x/Db=0.6 and x/Db=1.0) of the C2H4 mass fraction to experimental

values are given in Figures 6.10 and 6.11. Figure 6.10 shows the center-line mass

fraction of C2H4 as a function of the axial distance and indicates that the overall
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Figure 6.8: Comparison of predicted and measured radial profiles of u′v′ at various
locations downstream from the base of the bluff-body burner for non-reacting flow
with air jet.
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Figure 6.10: Comparison of predicted and
measured on-axis axial profiles of mean
C2H4 mass fraction downstream from the
base of the bluff-body burner for non-
reacting flow with C2H4 jet.

agreement is rather good, except for a slight over-prediction of the mass fraction near

x= 25-30 mm, which is close to the inner vortex of the double-vortex structure. The

mass fraction is also slightly under-predicted near r = 15-20 mm in Figure 6.11(a),

and over-predicted near r=8-12 mm in Figure 6.11(b). Dally et al. [188] indicate that

numerical predictions of the mixture fraction show strong sensitivity to the turbulence

modelling in these regions. In general, it is felt that the present numerical solutions

of the mixing field indicate that the fuel and oxidizer mixing process is in fact quite

well reproduced by the two-equation RANS turbulence modelling approach adopted

in this thesis research.



132 Chapter 6. Numerical Results

r (mm)

C
C

2
H

4

0.0 5.0 10.0 15.0 20.0 25.0 30.0

0.2

0.4

0.6

0.8

1

Numerical
Experimental (TNF)

(a) x/Db =0.6

r (mm)

C
C

2
H

4

5.0 10.0 15.0 20.0 25.0 30.00

0.1

0.2

0.3

0.4
Numerical
Experimental (TNF)

(b) x/Db =1.0

Figure 6.11: Comparison of predicted and measured radial profiles of mean C2H4

mass fraction at various locations downstream from the base of the bluff-body burner
for non-reacting flow with C2H4 jet.

6.2.3 Reacting Hot Flow

The final set of two-dimensional axisymmetric simulations considers a reacting

flow case for the bluff-body burner with methane fuel injected into the flow at the

base of the bluff body. The five-species, one-step, reduced kinetic scheme described

in Chapter 2 is used in this case to represent the oxidation of the methane fuel.

As with the cold flow case, the computations were carried out on a sequence of

adaptively refined grids in order to assess the grid convergence of the solutions. Three

computational grids were considered with each grid consisting of a number of 16×16

cell blocks: 28 blocks (1,792 cells); 43 blocks (2,752 cells); and 55 blocks (3,520 cells).

The refinement efficiencies for the medium and fine grids were 0.616 and 0.8772,

respectively. Also in this case, the mesh resolution was such that the typical size of

the computational cells nearest the wall was in the range 0.2 < y+ < 1.

Figures 6.12(a) and 6.12(b) show the predicted distributions of mean mass frac-

tion of CO2 and mean temperature for the turbulent non-premixed bluff-body burner

flame. The predicted flame structure is generally in agreement with the experimen-

tally observed structure. The flame is quite elongated and three zones can be iden-

tified: the re-circulation, neck, and jet-like propagation zones. A vortex structure

is formed in the re-circulation zone and acts to stabilize the flame. The maximum

flame temperature is about 2180 K. The predicted values of the mean temperature,

1620 K, and mass fraction of CO2, 0.116, at location of (x/Db=1.92, r/Rb=0.4) can
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be compared to the measured values of the flame temperature, 1120 K, and CO2 con-

centration, 0.07. At the location of (x/Db = 1.92, r/Rb =0.52), the computed mean

temperature, 1380 K, and mass fraction of CO2, 0.076, are over predicted compared

to the measured values of the flame temperature, 810 K, and CO2 concentration,

0.055. The results of the mesh refinement study are shown in Figures 6.12(c) and

6.12(d), and the majority of the solution values, such as axial velocity, temperature,

and major species CO2, do not change appreciably as the mesh is refined from 2,752

cells to 3,520 cells, providing confidence that a grid independent solution has been

achieved.

It is noted above that the temperature and hence carbon dioxide concentration are

somewhat over-predicted by the proposed parallel AMR scheme for this case. How-

ever, it is felt that the agreement with the experimental values is actually quite rea-

sonable considering the limitations of the simplified reduced chemical kinetics scheme

and turbulence/chemistry interaction model used herein, as well as the fact that ra-

diation transport has not been taken into account in the simulation. Note that while

radiation effects may influence the predicted temperature for this case; Merci et al.

argue that, since the flame is unconfined and very little soot is formed, radiation

effects should be relatively small [192, 194].

6.2.4 Multigrid Acceleration

The numerical solutions for both the cold and hot cases of the two-dimensional

axisymmetric bluff-body burner flows were obtained using the preconditioned multi-

grid technique described in Section 3.3. The 3-level V-cycle preconditioned multigrid

with a 3-stage optimally smoothing scheme was employed. A prolongation operator,

based on a cell-aspect-ratio sensor as discussed in Section 5.2.3, was also applied.

For those cells with aspect ratios greater than a value of 1000, a simple injection

was used. Standard bi-linear interpolation was employed for cells with aspect ratios

smaller than this value. The CFL number was 0.2.

Figures 6.13(a) and 6.13(b) indicate the preconditioned multigrid acceleration for

the non-reacting and reacting cases, respectively. Both the multigrid and precondi-
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Figure 6.12: Predicted mean mass fraction of CO2 and mean temperature contours
and comparison of predicted radial profiles of mean mass fraction of CO2 and mean
temperature to the measured data at x/Db = 1.92 downstream from the base of the
bluff-body burner for reacting flow with CH4 jet.

tioned multigrid algorithms speed up the convergence rates to the steady-state solu-

tions quite significantly for both cases as compared to the convergence rate achieved

using the semi-implicit time-marching method alone (i.e., smoother alone without the

multigrid procedure). The preconditioned multigrid seems to have a more positive

effect for the reacting case than for the non-reacting problem. Although the conver-

gence rate slows after the residual has been reduced by 4–5 orders of magnitude, and

this slow down may be associated with limitations of the proposed multigrid method

when AMR is used, overall it is felt that satisfactory convergence rates have been

achieved. The preconditioned multigrid provides a speedup of about two in terms of

CPU time over regular multigrid for both cases.
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Figure 6.13: Convergence features of preconditioned multigrid for cold and hot bluff-
body burner flows.

6.2.5 Parallel Performance

The parallel performance of the proposed solution-adaptive algorithm was assessed

for the two-dimensional turbulent pipe flow problem in the previous chapter. Here,

the parallel performance of the proposed algorithm, in terms of its strong scaling and

parallel efficiency, is further evaluated for a fixed-size turbulent bluff-body diffusion

flame problem having 112 solution blocks with two different mesh sizes: 28,672 cells

(112 16×16 cell blocks) and 64,512 cells (112 24×24 cell blocks). The performance
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was assessed using up to 64 processors. An added difference of this parallel perfor-

mance assessment from the previous one is that the 3-level V-cycle preconditioned

multigrid technique was used in the computations, whereas the previous estimation of

the parallel performance was carried out for the semi-implicit time-marching scheme

alone.

Figure 6.14 shows the parallel speedup (strong scaling) for this case. It can be

observed that the proposed scheme provides a nearly linear speedup and is about

76% efficient for up to 64 processors using the larger 24 × 24 cell solution blocks.

For the smaller 16 × 16 cell solution blocks, the parallel efficiency drops to 68%.

Compared to the estimation shown in Figure 5.15, the parallel efficiency is somewhat

reduced. The performance is affected by the coarse grid calculations of the multigrid

algorithm. In particular, the number of inter-block messages on the coarse meshes

is often nearly the same as that on the fine meshes, thereby decreasing the ratio of

computation to communication and adversely affecting the parallel performance. For

three-dimensional applications, it is felt that it will be generally easier to keep the

computation work to communication overhead ratio high using the proposed parallel

AMR approach and thereby maintain high parallel efficiency.

6.3 Three-Dimensional Turbulent Diffusion Flame

This section provides the fully three-dimensional simulations of the bluff-body

burner, for which the two-dimensional axisymmetric numerical results were discussed

above. Three-dimensional simulations of both non-reacting and reacting bluff-body

burner flows have been considered.

A cylindrical-shaped computational domain of the bluff-body burner can be used

for the three-dimensional simulations as shown in Figure 6.15. However, to reduce

the computational expense, a quarter section mesh of the bluff-body configuration

as illustrated in Figure 6.16 was used. Figure 6.17 depicts the mesh topology near

the fuel inlet for this case. The three-dimensional numerical results were obtained

using an explicit 3-stage optimally-smoothing time marching scheme with a CFL

number of 0.1. Typically, the momentum residual reduction was found to be about
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Figure 6.14: Parallel speedup (strong scaling) and efficiency for computation of Syd-
ney bluff-body burner two-dimensional flame problem with 3-level V-cycle precondi-
tioned multigrid using up to 64 processors.

Figure 6.15: An illustration of the mesh for the complete bluff-body burner
configuration.



138 Chapter 6. Numerical Results

X

Y

Z

Figure 6.16: A quarter of the bluff-body burner mesh with 392 (8×8×8) cell blocks
(200,704 cells).
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Figure 6.17: A magnified view of the mesh near the fuel inlet.
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3–4 order of magnitude within 200,000–250,000 iterations for all the three-dimensional

cases considered here. Note that the multigrid algorithm is not employed for three-

dimensional calculations.

6.3.1 Non-Reacting Cold Flow

As with the axisymmetric simulations, the three-dimensional computations were

carried out on a sequence of three adaptively refined grids, each consisting of a number

of 8×8×8 cell blocks: 56 blocks (28,672 cells); 84 blocks (43,008 cells); and 140

blocks (71,680 cells). In this way, grid convergence of the numerical solution could

be assessed. The cells of the computational grid are clustered in regions of strong

gradients of the mean mixture solution quantities, outer and inner shear layers, and

re-circulation zones near the walls. The mesh resolution typically provides for off-wall

spacings for the first cells nearest the wall in the range of 0.47 < y+ < 1.2.

Figures 6.18(a)–6.18(d) show colour contours of the predicted mean axial velocity

with superimposed mean streamlines in the xz-plane (y = 0) obtained from coarse,

medium and fine meshes for the three-dimensional cold-flow solutions of the bluff-body

burner. The figures reveal the formation of a vortex structure in the re-circulation

zone which is important in controlling fuel/oxidizer mixing. Th flow structure is

qualitatively and quantitatively very similar to the two-dimensional findings described

in previous section of this chapter. Clearly, Figure 6.18(c) indicates that the re-

circulation zone extends to z/Db ≈ 1.0 as the mesh was refined. This is very close to

the experimentally observed value.

Figures 6.19(a)–6.22(b) compares numerical distributions of mean axial velocity,

the intensity of velocity fluctuations, and the Reynolds shear stress, v′w′, to exper-

iments. Moreover, the results of the mesh refinement study are also shown in these

figures. From these profiles, it can be seen that the majority of those numerical so-

lution values do not change appreciably as the mesh is refined from the 43,008 cells

to 71,680 cells. This indicates that the numerical solution is converging toward a

grid-independent result.

Figure 6.19(a) depicts the axial (center-line) profile of the mean axial velocity
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component and a close-up of the region 0 < z/Db ≤ 1.0 is shown in Figure 6.19(b).

In addition, Figures 6.19(c) and 6.19(d) show comparisons of radial profiles of the

mean axial velocity component at z/Db = 0.6 and z/Db = 1.0 downstream from the

base of the bluff-body burner. The predicted mean axial velocity on the axis is slightly

over-predicted for 0 < z/Db < 1.0; otherwise, good agreement between the numerical

solutions and experiment can be observed.
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Figure 6.18: Predicted mean axial velocity contours on coarse, medium and fine
meshes: (a) coarse mesh consists of 56 solution blocks (8×8×8) 28,672 cells, (b)
medium mesh consists of 84 solution blocks (8×8×8) 43,008 cells of 2-level refinement
with a refinement efficiency of 0.8125; (c) fine mesh consists of 140 solution blocks
(8×8×8) 71,680 cells of 3-level refinement with a refinement efficiency of 0.9609, and
(d) shows the zoom-in view of the refined mesh in the region close to the fuel jet and
bluff-body solid wall in the fine mesh.

Figures 6.20 and 6.21 show comparisons of the predicted and measured values of

the RMS fluctuations in the velocity components (axial and radial velocity compo-

nents). The predicted intensity of the fluctuations in the axial velocity component is

under-predicted overall, while the predicted intensity of fluctuations in the radial ve-

locity component is generally over-predicted, as compared to the experimental data.
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Figure 6.19: Predicted mean axial velocity radial profiles at z/Db=0.6 and z/Db=1.0
downstream from the base of the bluff-body burner for non-reacting flow with air jet.

The computed and measured specific Reynolds stress v′w′ profiles are also compared

in Figure 6.22. The numerical values of v′w′ are somewhat under-predicted in the

relatively high mean-velocity regions, but closer to the measured data in the low mean-

velocity regions. It can be seen that there are under- and/or over-predicted regions

close to the center-line and the solid wall boundaries. These regions either encompass

or are in the vicinity of the re-circulation zone. As noted earlier, re-circulation zones

with complex turbulent structures are quite sensitive to the turbulence modelling.

A variety of RANS simulations have addressed the sensitivity of the results to the

turbulence model and/or combustion models [95,96,188,191–193]. The overall agree-

ment between the predicted results from the current study and the experimental data

is thought to be quite reasonable and is comparable to other similar results found in

the literature [188, 190,192].
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Figure 6.20: Comparison of predicted and measured radial profiles of

√
w′2 at various

locations downstream from the base of the bluff-body burner for non-reacting flow
with air jet.
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Figure 6.21: Comparison of predicted and measured radial profiles of

√
v′2 at various

locations downstream from the base of the bluff-body burner for non-reacting flow
with air jet.

6.3.2 Reacting Hot Flow

As a final case, a fully three-dimensional simulations of the reactive bluff-body

burner flow with methane fuel injection was considered. A quarter section of the

three-dimensional grid was again used. Reactive flow-field predictions using the same

chemical kinetics as in the axisymmetric simulations have been performed on a se-

quence of three successively refined meshes, with each grid consisting of a number of

8×8×8 cell blocks. The three computational grids consist of 56 blocks (28,672 cells),

133 blocks (68,096 cells), and 210 blocks (107,520 cells), respectively. The refinement

efficiency for the grids ranged from 0.7 to 0.9414. The sequence of the refined meshes
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Figure 6.22: Comparison of predicted and measured radial profiles of v′w′ at various
locations downstream from the base of the bluff-body burner for non-reacting flow
with air jet.

in xz-planes (y=0) is shown in Figures 6.23(a)–6.23(d). Similar to the non-reacting

case, the mesh resolution has a typical off-wall spacing of the first computational cells

nearest the wall in the range 0.47 < y+ < 1.2.

The experimental and numerical bluff-body flame structure are shown in Fig-

ures 6.24(a) and 6.24(b), respectively. Figures 6.25(a) and 6.25(b) provide the com-

puted distributions of mean mass fraction of CO2 and temperature in the xz-plane

(y=0) for this turbulent non-premixed flame, respectively. The predicted flame struc-

ture is generally in very good agreement with the experimental observations and the

previous two-dimensional axisymmetric results. Like the experimental flame, the nu-

merical flame is quite elongated and three zones can be identified: the re-circulation,

neck, and jet-like propagation zones. As noted previously, a vortex structure is formed

in the re-circulation zone and acts to stabilize the flame. The maximum computed

flame temperature is about 2100 K, which is close to the value of 2180 K observed in

previous axisymmetric studies of this bluff-body hot-flow case.

Figures 6.25(c) and 6.25(d) compare the radial profiles of the predicted mean

temperature and mass fraction of CO2 to the experiments at a location of z/Db =

1.92 downstream from the base of the bluff body. Additionally, the figures also

show the results of the mesh refinement study and indicate that the predicted mean

quantities of CO2 mass fraction and temperature do not change significantly as the

mesh is refined from 68,096 cells to 107,520 cells. This provides confidence that the
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Figure 6.23: Predicted mean axial velocity contours on coarse, medium and fine
meshes, each consists of a number of 8×8×8 cell blocks: (a) coarse mesh consists
of 56 solution blocks 28,672 cells, (b) medium mesh consists of 133 solution blocks
68,096 cells of 2-level refinement with a refinement efficiency of 0.70; (c) fine mesh
consists of 210 solution blocks 107,520 cells of 3-level refinement with a refinement
efficiency of 0.9414, and (d) shows the magnified view of the refined mesh in the
region close to the fuel jet and bluff-body solid wall in the fine mesh.

numerical solution is converging toward a grid-independent result that agrees well

with experiments. The predicted mean temperature, 1628 K, and mass fraction of

CO2, 0.095, at the location of z/Db=1.92, r/Rb=0.4 are comparable to the measured

values of the flame temperature, 1120 K, and carbon dioxide concentration, 0.07. At

the location of z/Db=1.92, r/Rb=0.52, the predicted mean temperature, 940 K, and

mass fraction of CO2, 0.04, are quite close compared to the measured values of the

flame temperature, 810 K, and carbon dioxide concentration, 0.055. The comparisons

shown in the figure indicate that both the mean temperature and mass fraction of

CO2 are generally well predicted considering the simplified chemical kinetics and

eddy dissipation model used for prescribing the interaction between turbulence and

chemistry.
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Table 6.1: The parallel fraction of the program varies with increasing the number of
processors

CPU(s) f

2 100%
6 100%
14 99.96%
21 100%
42 99.93%

6.3.3 Parallel Performance

The parallel performance of the three-dimensional algorithm has also been as-

sessed for the Sydney bluff-body burner flame. For this purpose, a fixed size problem

was considered with a multi-block hexahedral computational mesh consisting of 42

solution blocks (8× 8× 8) 21,504 cells. The parallel performance was then measured

using up to 42 processors. The strong scaling performance results are shown in Fig-

ure 6.26. The results indicate that the parallel speedup remains essentially linear with

an efficiency of 98% up to 42 processors. Again, Table 6.1 provides an estimate of

the parallel fraction of the program using Amdahl’s law. The serial fraction remains

particularly low (0.04%–0.07%) and the proposed algorithm can be seen to be well

suited for scaling to larger numbers of processors.

The parallel efficiency for the three dimensional case is particularly good as com-

pared to the two-dimensional results discussed earlier due to the high ratio of com-

putational work to communication time for each processor. This feature will be

generally true for most three-dimensional problems and provides strong support for

the use of the proposed block-based AMR approach for predicting three-dimensional

combusting flows using parallel computer architectures.
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Figure 6.24: Comparison of the experimental and numerical bluff-body flames.
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Figure 6.25: Predicted mean mass fraction of CO2 and temperature contour on the
final fine mesh; and comparison of predicted mean mass fraction of CO2 and temper-
ature profiles at the location of z/Db = 1.92 downstream for the reacting flow with
CH4 jet.
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Chapter 7

Conclusions

7.1 Conclusions

A new highly parallelized AMR scheme has been described for obtaining steady-

state solutions of two- and three-dimensional turbulent non-premixed combusting

flows. The parallel AMR algorithm solves the system of PDEs governing turbulent

compressible flows of reactive thermally perfect gaseous mixtures using a fully coupled

finite-volume formulation on body-fitted multi-block quadrilateral and hexahedral

mesh. This compressible formulation can readily accommodate large density varia-

tions and thermo-acoustic phenomena. As the primary focus of the thesis research has

been the efficient solution of non-premixed combusting flows and not the improved

modelling of such flows, somewhat simplified models for the turbulence/chemistry

interaction and chemical kinetics were employed. In particular, an eddy-dissipation

model, one-step chemical kinetics for gaseous fuels, and a RANS formulation based on

a two-equation model of turbulence were considered. These models afforded a level

of simplicity which was very beneficial to the algorithm development yet provided

sufficient realism to assess the performance of the solution method. The combina-

tion of a block-based AMR strategy, hierarchical tree data structure, and parallel

implementation has resulted in a highly scalable computational tool.

Following a partial verification of the proposed parallel algorithm, the scheme was

applied to the numerical prediction of a bluff-body stabilized turbulent diffusion flame.

149
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Both two-dimensional axisymmetric and fully three-dimensional configurations were

considered and the numerical results for the cold- and hot-flow cases were compared

to available experimental data, including mean velocity and turbulence quantities.

Given the complexity of the combusting flow field, limitations of the reduced chemical

reaction mechanism, and simplified turbulence/chemistry interaction model adopted

here, the results reported herein are quite encouraging and indicate the potential of

the algorithm for predicting more complex combusting flows.

The primary goal of this research was to establish a computational framework

for predicting complex turbulent non-premixed reacting flows in practical combustor

geometries and this goal has generally been achieved. The extension and application

of the proposed algorithm to RANS and LES modelling of other non-premixed flames

including more sophisticated turbulence chemistry interaction model, more detailed

chemical kinetic schemes, soot and radiation models, and multi-phase flow treatment

for liquid fuels will be the subject of other follow-on research in the future.

7.2 Original Contributions

This thesis research has contributed to the development of a parallel AMR al-

gorithm for performing simulations of both two- and three-dimensional turbulent

combusting flows. The key original features of the proposed parallel AMR algorithm

are highlighted below.

1. A new parallel AMR framework has been developed for performing solution-

direction mesh adaptation of multi-block body-fitted grids and applied to the

prediction of turbulent reactive flows. The block-based AMR technique allows

for anisotropic grids and makes use of a flexible hierarchical tree data structure

for the treatment of complex grid topologies having unstructured block con-

nectivity. By design, the block-based approach also leads to a highly scalable

and efficient parallel implementation of the finite-volume solution scheme on

multi-processor parallel clusters.

Note that the proposed block-based AMR technique has the potential to both
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reduce the time/cost associated with mesh generation, as much of the mesh

generation is carried out in an automated fashion, as well as reduce the time/cost

associated with obtaining a solution, as the AMR mesh is more efficient.

2. A novel low-cost and computationally efficient technique has also been proposed

for the generation of refined body-fitted or curvilinear grid blocks which must be

determined as part of the AMR process. The grid refinement procedure makes

use of standard grid metrics to preserve the original mesh topology, smoothness

of the grid lines, and grid point clustering of the body-fitted mesh.

3. For complex turbulent combusting flows, dealing with the near-wall turbulence

is challenging within an AMR procedure. A somewhat novel automatic and

smooth switching procedure for computing wall turbulence has been proposed,

and that is well suited to the AMR scheme considered here. This automatic

near-wall treatment readily accommodates situations during AMR where the

mesh resolution may not be sufficient for directly calculating near-wall turbu-

lence using the low-Reynolds-number formulation.

4. In order to provide enhanced convergence for steady-state problems, a pre-

conditioned (matrix preconditioner) multigrid strategy has been proposed and

developed for two-dimensional turbulent combustion calculations. It is thought

to be one of the first applications of a parallel AMR scheme with multigrid

to turbulent-combusting flow calculations in the literature, and significantly

improved convergence was achieved by devising a cell-aspect-ratio-based pro-

longation operator for treating highly stretched meshes.

5. Finally, a quantitative evaluation of the parallel AMR algorithm with the fea-

tures described above has been carried out for a complex turbulent combusting

flow having a relatively complex physical geometry (the bluff-body burner) and

the numerical predictions were compared to experimental data. This numerical

study demonstrates the validity and potential of the parallel AMR approach for

predicting fine-scale features of complex turbulent non-premixed flames.
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7.3 Future Research

There are a number of avenues for future research that have arisen from or during

the course of this work. They are as follows:

• Investigation of Newton-Krylov-Schwarz (NKS) strategies to improve the effi-

ciency of the time integration procedure while maintaining high parallel effi-

ciency. Note that the current time-marching scheme as described is certainly

not optimal, particularly for the three-dimensional case, but the proposed block-

based AMR scheme is well suited to a NKS treatment. The NKS approach could

be combined with a multigrid or multi-level method.

• Inclusion of more sophisticated combustion modelling to produce more accurate

flame predictions including improved modelling of turbulence/chemistry inter-

action, chemical kinetics, soot formation and transport, radiation transport and

liquid fuels [11, 108–110].

• Investigation of refinement criteria based on reconstruction error estimation.

• Investigation of anisotropic grid refinement based on directional dependent re-

finement and a binary tree data structure to enhance the efficiency of the AMR

algorithm.
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Appendix A

Governing Equation Systems

Two-Dimensional Axisymmetric Formulation

The divergence form of Equation(3.1) is obtained by applying Gauss’s theorem to
the flux integral, leading to

∂U

∂t
+
(
~∇ · ~F

)
=
∂U

∂t
+
(
~∇ · ~FI

)
+
(
~∇ · ~FV

)
= S , (A.1)

where ∇ is the well-known gradient operator. The complete set of equations is re-
formulated in conservation form for two dimensional axisymmetric coordinate frames
as

∂U

∂t
+
∂(F − Fv)

∂r
+
∂(G − Gv)

∂z
= −(Sa − Sav)

r
+ St + Sc , (A.2)

where r and z denote the radial and axial coordinates, U the cell-averaged solution
vector, FI and FV the inviscid and viscous flux vectors in radial direction, GI and
GV the inviscid and viscous flux vectors in axial direction, SaI , SaV are the source
terms due to the axisymmetric coordinates, and St and Sc are the source terms due
to turbulence and chemical reactions. Each of this term is given below.

U =
[
ρ, ρvr, ρvz, ρe, ρk, ρω, ρc1, ..., ρcN

]T

F=




ρvr

ρvr2 + p
ρvrvz

(ρe+ p)vr

ρkvr

ρωvr

ρc1vr
...

ρcNvr




, Fv=




0
τrr + λrr

τrz + λrz

−qr − qtr + (µ+ µtσ
∗)∂k
∂r

+ vr(τrr + λrr) + vz(τrz + λrz)
(µ+ µtσ

∗)∂k
∂r

(µ+ µtσ)∂ω
∂r

−J1r + Jt1r
...

−JNr + JtNr




,

(A.3)
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G=




ρvz

ρvrvz

ρvz
2 + p

(ρe+ p)vz

ρkvz

ρωvz

ρvzc1
...

ρvzcN




, Gv=




0
τzr + λzr

τzz + λzz

−qz − qTz + (µ+ µtσ
∗)∂k
∂z

+ vr(τzr + λzr) + vz(τzz + λzz)
(µ+ µtσ

∗)∂k
∂z

(µ+ µtσ)∂ω
∂z

−(JT1z + JL1z
)

...
−(JTNz + JLN z

)




,(A.4)

SaI=




ρvr

ρvr
2

ρvrvz

(ρe+ P )vz

ρkvr

ρωvr

ρc1vr
...

ρcNvr




, SaV=




0
(τrr + λrr) − (τθθ + λθθ)

(τrz + λrz)

−qr − qtr + W +
(
µ+ µtσ

∗
)
∂k
∂r

(µ+ µtσ
∗)∂k
∂r

(µ+ µtσ)∂ω
∂r

J1r + Jt1r
...

JN r + JtN r




,S=




0
0
0
0

P − β∗ρkω
αω
k
P − βρω2

ρω̇1
...

ρω̇N




.

(A.5)
In above equations, vr and vz are the r and z components of the mass-averaged velocity
of the mixture, and the work done by the molecular stresses, W and production term,

P , are given by W = vr(τrr + λrr) + vz(τrz + λrz) and P = λrr
∂vr
∂r

+ λrz

(
∂vr
∂z

+ ∂vz
∂r

)
+

λzz
∂vz
∂z

+ λθθ
vr
r

Three-Dimensional Formulation

For three-dimensional flows, Equations (2.8)–(2.10), (2.12), (2.21), and (2.22) can
be re-expressed using vector notation as

∂U

∂t
+

∂

∂x
(F − Fv) +

∂

∂y
(G −Gv) +

∂

∂z
(H− Hv) = S , (A.6)

where U is the vector of conserved variables given by

U =
[
ρ, ρvx, ρvy, ρvz, ρe, ρk, ρω, ρc1, . . . , ρcN

]T
, (A.7)
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and the inviscid and viscous x-direction flux vectors, F and Fv, can be written as

F=




ρvx

ρv2
x + p
ρvxvy

ρvxvz

(ρe+ p)vx

ρkvx

ρωvx

ρc1vx
...

ρcNvx




, Fv=




0
τxx + λxx

τxy + λxy

τxz + λxz

Wx − qx − qtx + (µ+ µtσ
∗)∂k
∂x

(µ+ µtσ
∗)∂k
∂x

(µ+ µtσ)∂ω
∂x

−J1x −Jt1x
...

−JNx −JtNx




, (A.8)

G=




ρvy

ρvxvy

ρv2
y + p
ρvyvz

(ρe+ p)vy

ρkvy

ρωvy

ρc1vy
...

ρcNvy




, Gv=




0
τyx + λyx

τyy + λyy

τyz + λyz

W† − qy − qty + (µ+ µtσ
∗)∂k
∂y

(µ+ µtσ
∗)∂k
∂y

(µ+ µtσ)∂ω
∂y

−J1y −Jt1y
...

−JNy −JtN y




, (A.9)

H=




ρvz

ρvzvx

ρvzvy

ρv2
z + p

(ρe+ p)vz

ρkvz

ρωvz

ρc1vz
...

ρcNvz




, Hv=




0
τzx + λzx

τzy + λzy

τzz + λzz

Wz − qz − qtz + (µ+ µtσ
∗)∂k
∂z

(µ+ µtσ
∗)∂k
∂z

(µ+ µtσ)∂ω
∂z

−J1z −Jt1z
...

−JN z −JtN z




, (A.10)

where Wx = vx(τxx +λxx)+vy(τxy +λxy)+vz(τxz +λxz), Wy = vx(τxy +λxy)+vy(τyy +
λyy)+ vz(τyz +λyz), and Wz = vx(τxz +λxz)+ vy(τyz + λyz) + vz(τzz +λzz). The y- and
z-direction flux vectors G, Gv, H, and Hv have similar forms. The source vector,
S contains terms related to the finite rate chemistry, body force due to gravity, and
turbulence modeling and has the form

S =
[

0, 0, 0, 0, 0, P − β∗ρkω, αω
k
P − βρω2, ρω̇1, . . . , ρω̇N

]
, (A.11)
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with

P = λxx
∂vx

∂x
+λxy(

∂vx

∂y
+
∂vy

∂x
)+λyy

∂vy

∂y
+λxz(

∂vz

∂z
+
∂vz

∂x
)+λyz(

∂vy

∂z
+
∂vz

∂y
)+λzz

∂vz

∂z
,

(A.12)
and where x, y, and z are the coordinates of the three dimensional Cartesian frame;
vx, vy, and vz are the x, y, and z velocity components; qx, qy, and qz are the x, y, and
z components of the heat flux; τxx, τxy, τyy, τxz, τyz, and τzz are the components of the
viscous fluid stresses; and λxx, λxy, λxz, λxz, λyz, and λzz are the Reynolds stresses.



Appendix B

Eigensystem of the Inviscid
Jacobian

The application of the numerical solution scheme considered in this work requires
knowledge of the flux Jacobian matrices and their associated eigenvalues and eigen-
vectors. The flux Jacobian matrices are A = ∂F(U)

∂U
, B = ∂G(U)

∂U
and C = ∂H(U)

∂U
. In

order to obtain the flux Jacobian matrices, the pressure derivatives are needed and
described below.

The computation of pressure is from total energy ρe and equation of state. The
derivatives of pressure with respect to the conserved variables will be used to compute
the flux Jacobian matrices.

The total energy, ρe, is defined as

ρe = ρ

[
1

2
(u2 + v2 + w2) +

N∑

n=1

cnǫn + k

]
(B.1)

where

ǫn =

∫ T

To

Cvn
(
τ
)
dτ + h0

fn

The equation of state for multispecies is written as

p = ρ

N∑

n=1

cnRnT (B.2)

Taking the total derivative of equation (B.1) with respect to the conservative variables,
and rearranging the terms, they can be written as follows:

d(ρe) =
v2
x + v2

y + v2
z

−2
d(ρ) +

vxd(ρvx) + vyd(ρvy) + vzd(ρvz) +
N∑

n=1

ǫnd(ρcn) + ρCvd(T ) + d(ρk) (B.3)
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where Cv =
∑N

n=1 cnCvn. Taking the total derivative of equation (B.2) with respect to
the conservative variables, and rearranging the terms, they can be written as follows:

dp = ρRd(T ) +
N∑

n=1

RnTd(ρcn) (B.4)

where R =
∑N

n=1 cnRn. This equation maybe recast equation (B.4) as:

dT =
1

ρR

[
dp−

N∑

n=1

RnTd(ρcn)

]
(B.5)

and then substitute equation (B.5) into equation (B.3)to arrive at:

dp =
R

Cv

[(v2
x + v2

y + v2
z

2

)
d(ρ) − vxd(ρvx) − vyd(ρvy) − vzd(ρvz) + d(ρe) − d(ρk)

−
N∑

n=1

(
ǫn −

CvRnT

R

)
d(ρcn)

]
(B.6)

It is more straightforward to derive the Jacobian matrices and their associated
eigenvalues and eigenvectors for governing equation system written in non-conservative
formulation. We rewrite governing equation system (Equation 3.9)in terms of primi-
tive parameters as follows:

∂W

∂t
+ A∂W

∂x
+ B∂W

∂y
+ C ∂W

∂z
=
∂W

∂U
S, (B.7)

where A =

(
∂W
∂U

∂F
∂U

∂U
∂W

)
, B =

(
∂W
∂U

∂G
∂U

∂U
∂W

)
and C =

(
∂W
∂U

∂H
∂U

∂U
∂W

)
, and

W =
[
ρ, vx, vy, wz, p, k, ω, c1, c2, · · · , cN

]T
,

U =
[
ρ, ρvx, ρvy, ρvz, ρe, ρk, ρω, ρc1, ρc2, · · · , ρcN

]T

=
[

U1, U2, U3, U4, U5, U6, U7, U8, U9, · · · , UN+7

]T

Flux vectors (F, G,H) can be written in a general form in terms of the conserved
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variables as

~F =




U2 ~ni + U3 ~nj + U4 ~nk

U2

(
U2

U1
~ni +

U3

U1
~nj + U4

U1
~nk

)
+ p~ni

U3

(
U2

U1
~ni +

U3

U1
~nj + U4

U1
~nk

)
+ p ~nj

U4

(
U2

U1
~ni +

U3

U1
~nj + U4

U1
~nk

)
+ p ~nk

(
U5 + p

)(
U2

U1
~ni +

U3

U1
~nj + U4

U1
~nk

)

U6

(
U2

U1
~ni +

U3

U1
~nj + U4

U1
~nk

)

U7

(
U2

U1
~ni +

U3

U1
~nj + U4

U1
~nk

)

U1+7

(
U2

U1
~ni +

U3

U1
~nj + U4

U1
~nk

)

...

...

...

UN+7

(
U2

U1
~ni +

U3

U1
~nj + U4

U1
~nk

)




(B.8)

where ~ni, ~nj and ~nk are unit norm vector. Flux Jacobian matrices, A, B and C, have
a general formula as:

∂~F

∂U
=




. ~ni ~nj ~nk . . . . . · · · .

A21 A22 A23 A24
∂p
∂U5

~ni
∂p
∂U6

~ni . ∂p
∂U8

~ni
∂p
∂U9

~ni · · · ∂p
∂UN+7

~ni

A31 A32 A33 A34
∂p
∂U5

~nj
∂p
∂U6

~nj . ∂p
∂U8

~nj
∂p
∂U9

~nj · · · ∂p
∂UN+7

~nj

A41 A42 A43 A44
∂p
∂U5

~nk
∂p
∂U6

~nk . ∂p
∂U8

~nk
∂p
∂U9

~nk · · · ∂p
∂UN+7

~nk

A51 A52 A53 A54
~V (1 + ∂p

∂U5
) ~V ∂p

∂U6
. ~V ∂p

∂U8

~V ∂p
∂U9

. ~V ∂p
∂UN+7

−k~V k ~ni k ~nj k ~nk . ~V . . . · · · .

−ω~V ω ~ni ω ~nj ω ~nk . . ~V . . · · · .
−c1
ρ
~V 1

ρ ~ni
1
ρ ~nj

1
ρ ~nk . . . ~V . · · · .

−c2
ρ
~V 1

ρ ~ni
1
ρ ~nj

1
ρ ~nk . . . . ~V · · · .

...
...

...
...

...
...

...
...

...
...

...
−cN
ρ
~V 1

ρ ~ni
1
ρ ~nj

1
ρ ~nk . . . . . . ~V






178 Appendix B. Eigensystem of the Inviscid Jacobian

where



A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

A51 A52 A53 A54




is shown in details by




−vx~V + ∂p
∂U1

~ni vx ~ni + ~V + ∂p
∂U2

~ni vx ~nj + ∂p
∂U3

~ni vx ~nk + ∂p
∂U4

~ni

−vy~V + ∂p
∂U1

~nj vy ~ni +
∂p
∂U2

~nj ~V + vy ~nj + ∂p
∂U3

~nj vy ~nk + ∂p
∂U4

~nj

−vz~V + ∂p
∂U1

~nk vz ~ni +
∂p
∂U2

~nk vz ~nj + ∂p
∂U3

~nk ~V + vz ~nk + ∂p
∂U4

~nk
~V [ ∂p

∂U1
− (e+ p

ρ
)] ~V ∂p

∂U2
+ (e+ p

ρ
)~ni ~V ∂p

∂U3
+ (e+ p

ρ
) ~nj ~V ∂p

∂U4
+ (e+ p

ρ
) ~nk




where

~V = vx ~ni + vy ~nj + vz ~nk .

The elements in ∂U
∂W

and
(
∂U
∂W

)−1
are given by

∂U

∂W
=




1 . . . . . . . . . .
vx ρ . . . . . . . . .
vy . ρ . . . . . . . .
vz . 0 ρ . . . . . . .

(v2x+v2y+v2z )

2
+ k + ǫ− CvT ρvx ρvy ρvz

Cv

R
ρ 0 ρη1 ρη2 . ρηN

k . . . . ρ . . . . .
ω . . . . . ρ . . . .
. . . . . . . 1 . . .
. . . . . . . . . . .
. . . . . . . . . 1
. . . . . . . . . . 1




,

and

∂W

∂U
=




1 . . . . . . . . . .
−vx

ρ
1
ρ

. . . . . . . . .

−vy

ρ
. 1

ρ
. . . . . . . .

−vz

ρ
. . 1

ρ
. . . . . . .(

v2x+v2y+v2zR

2Cv

)
−R
Cv
vx

−R
Cv
vy

−R
Cv
vz

−R
Cv

−R
Cv

0 −R
Cv
η1

−R
Cv
η2 . −R

Cv
ηN

−k
ρ

. . . . 1
ρ

. . . . .

−ω
ρ

. . . . . 1
ρ

. . . .

. . . . . . . 1 . . .

. . . . . . . . . . 1




.
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Jacobian matrices A, B and C, are similar to matrices A, B and C, so the eigen-
values are the same for both kinds of matrices. The eigenvalues were obtained from
matrices A, B and C.

The eigenvalues for Jacobian matrices are:

λ1 = λ2 = λ3 = · · · = λn = vx ~ni + vy ~nj + vz ~nk λn+1 = λ1 + a λn+2 = λ1 − a .

The right eigenvector matrix for flux Jacobian A is written as:




1 1 . . 1 . . . . · · · .
vx vx − a . . vx + a . . . . · · · .
vy vy ρ . vy . . . . · · · .
vz vz . ρ vz . . . . · · · .

H− CpT H− vxa ρvy ρvz H + vxa ρ 0 ρη1 ρη2 · · · ρηN
k k . . k ρ . . . · · · .
ω ω . . ω . ρ . . · · · .
c1 c1 . . c1 . . ρ . · · · .
c2 c2 . . c2 . . . ρ · · · .

...
...

...
...

...
...

...
...

...
...

...
cN cN . . cN . . . . · · · ρ




.

The right eigenvector matrix for flux Jacobian B is written as:




1 . 1 . 1 . . . . · · · .
vx ρ vx . vx . . . . · · · .
vy . vy − a . vy + a . . . . · · · .
vz . vz ρ vz . . . . · · · .

H− CpT ρvx H− vya ρvz H + va ρ 0 ρη1 ρη2 · · · ρηN
k . k . k ρ . . . · · · .
ω . ω . ω . ρ . . · · · .
c1 . c1 . c1 . . ρ . · · · .
c2 . c2 . c2 . . . ρ · · · .

...
...

...
...

...
...

...
...

...
...

...
cN . cN . cN . . . . · · · ρ




.
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The right eigenvector matrix for flux Jacobian C is written as:




1 . . 1 1 . . . . · · · .
vx ρ . vx vx . . . . · · · .
vy . ρ vy vy . . . . · · · .
vz . . vz − a vz + a . . . . · · · .

H− CpT ρvx ρvy H + vza H + vza ρ 0 ρη1 ρη2 · · · ρηN
k . . k k ρ . . . · · · .
ω . . ω ω . ρ . . · · · .
c1 . . c1 c1 . . ρ . · · · .
c2 . . c2 c2 . . . ρ · · · .

...
...

...
...

...
...

...
...

...
...

...
cN . . cN cN . . . . · · · ρ




,

where a =

√√√√RT

(
1 + R

Cv

)
, ηi = ǫi − CvRiT

R
and the specific enthalpy is H = v2x

2
+

v2y
2

+ v2z
2

+ h + k, h = ǫ+ p
ρ
, where ǫ is the specific internal energy.


